No Arabic abstract
The Internet is composed of routing devices connected between them and organized into independent administrative entities: the Autonomous Systems. The existence of different types of Autonomous Systems (like large connectivity providers, Internet Service Providers or universities) together with geographical and economical constraints, turns the Internet into a complex modular and hierarchical network. This organization is reflected in many properties of the Internet topology, like its high degree of clustering and its robustness. In this work, we study the modular structure of the Internet router-level graph in order to assess to what extent the Autonomous Systems satisfy some of the known notions of community structure. We show that the modular structure of the Internet is much richer than what can be captured by the current community detection methods, which are severely affected by resolution limits and by the heterogeneity of the Autonomous Systems. Here we overcome this issue by using a multiresolution detection algorithm combined with a small sample of nodes. We also discuss recent work on community structure in the light of our results.
We present the first complete measurement of the Chinese Internet topology at the autonomous systems (AS) level based on traceroute data probed from servers of major ISPs in mainland China. We show that both the Chinese Internet AS graph and the global Internet AS graph can be accurately reproduced by the Positive-Feedback Preference (PFP) model with the same parameters. This result suggests that the Chinese Internet preserves well the topological characteristics of the global Internet. This is the first demonstration of the Internets topological fractality, or self-similarity, performed at the level of topology evolution modeling.
When does Internet traffic cross international borders? This question has major geopolitical, legal and social implications and is surprisingly difficult to answer. A critical stumbling block is a dearth of tools that accurately map routers traversed by Internet traffic to the countries in which they are located. This paper presents Passport: a new approach for efficient, accurate country-level router geolocation and a system that implements it. Passport provides location predictions with limited active measurements, using machine learning to combine information from IP geolocation databases, router hostnames, whois records, and ping measurements. We show that Passport substantially outperforms existing techniques, and identify cases where paths traverse countries with implications for security, privacy, and performance.
Recently we introduced the rich-club phenomenon as a quantitative metric to characterize the tier structure of the Autonomous Systems level Internet topology (AS graph) and we proposed the Interactive Growth (IG) model, which closely matches the degree distribution and hierarchical structure of the AS graph and compares favourble with other available Internet power-law topology generators. Our research was based on the widely used BGP AS graph obtained from the Oregon BGP routing tables. Researchers argue that Traceroute AS graph, extracted from the traceroute data collected by the CAIDAs active probing tool, Skitter, is more complete and reliable. To be prudent, in this paper we analyze and compare topological structures of Traceroute AS graph and BGP AS graph. Also we compare with two synthetic Internet topologies generated by the IG model and the well-known Barabasi-Albert (BA) model. Result shows that both AS graphs show the rich-club phenomenon and have similar tier structures, which are closely matched by the IG model, however the BA model does not show the rich-club phenomenon at all.
Mobility is the backbone of urban life and a vital economic factor in the development of the world. Rapid urbanization and the growth of mega-cities is bringing dramatic changes in the capabilities of vehicles. Innovative solutions like autonomy, electrification, and connectivity are on the horizon. How, then, we can provide ubiquitous connectivity to the legacy and autonomous vehicles? This paper seeks to answer this question by combining recent leaps of innovation in network virtualization with remarkable feats of wireless communications. To do so, this paper proposes a novel paradigm called the Internet of autonomous vehicles (IoAV). We begin painting the picture of IoAV by discussing the salient features, and applications of IoAV which is followed by a detailed discussion on the key enabling technologies. Next, we describe the proposed layered architecture of IoAV and uncover some critical functions of each layer. This is followed by the performance evaluation of IoAV which shows the significant advantage of the proposed architecture in terms of transmission time and energy consumption. Finally, to best capture the benefits of IoAV, we enumerate some social and technological challenges and explain how some unresolved issues can disrupt the widespread use of autonomous vehicles in the future.
The original design of the Internet was a resilient, distributed system, that maybe able to route around (and therefore recover from) massive disruption --- up to and including nuclear war. However, network routing effects and business decisions cause traffic to often be routed through a relatively small set of Autonomous Systems (ASes). This is not merely an academic issue; it has practical implications --- some of these frequently appearing ASes are hosted in censorious nations. Other than censoring their own citizens network access, such ASes may inadvertently filter traffic for other foreign customer ASes. In this paper, we examine the extent of routing centralization in the Internet; identify the major players who control the Internet backbone; and point out how many of these are, in fact, under the jurisdiction of censorious countries (specifically, Russia, China, and India). Further, we show that China and India are not only the two largest nations by number of Internet users, but that many users in free and democratic countries are affected by collateral damage caused due to censorship by such countries.