Building topological device through emerging robust helical surface states


Abstract in English

We propose a nonlocal manipulation method to build topological devices through emerging robust helical surface states in Z_2=0 topological systems. Specifically, in a ribbon of Z_2=0 Bernevig- Hughes-Zhang (BHZ) model with finite-size effect, if magnetic impurities are doped on the top (bottom) edge, the edge states on the bottom (top) edge can be altered according to the strengths and directions of these magnetic impurities. Consequently, the backscattering between the emerging robust helical edge states and gapped normal edge states due to finite-size confinement is also changed, which makes the system alternate between a perfect one-channel conductor and a perfect insulator. This effect allows us to fabricate topological devices with high on-off ratio. Moreover, it can also be generalized to 3D model and more realistic Cd3As2 type Dirac semimetals.

Download