No Arabic abstract
This paper explores the emergence of norms in agents societies when agents play multiple -even incompatible- roles in their social contexts simultaneously, and have limited interaction ranges. Specifically, this article proposes two reinforcement learning methods for agents to compute agreements on strategies for using common resources to perform joint tasks. The computation of norms by considering agents playing multiple roles in their social contexts has not been studied before. To make the problem even more realistic for open societies, we do not assume that agents share knowledge on their common resources. So, they have to compute semantic agreements towards performing their joint actions. %The paper reports on an empirical study of whether and how efficiently societies of agents converge to norms, exploring the proposed social learning processes w.r.t. different society sizes, and the ways agents are connected. The results reported are very encouraging, regarding the speed of the learning process as well as the convergence rate, even in quite complex settings.
Norms with sanctions have been widely employed as a mechanism for controlling and coordinating the behavior of agents without limiting their autonomy. The norms enforced in a multi-agent system can be revised in order to increase the likelihood that desirable system properties are fulfilled or that system performance is sufficiently high. In this paper, we provide a preliminary analysis of some types of norm revision: relaxation and strengthening. Furthermore, with the help of some illustrative scenarios, we show the usefulness of norm revision for better satisfying the overall system objectives.
How cooperation emerges is a long-standing and interdisciplinary problem. Game-theoretical studies on social dilemmas reveal that altruistic incentives are critical to the emergence of cooperation but their analyses are limited to stateless games. For more realistic scenarios, multi-agent reinforcement learning has been used to study sequential social dilemmas (SSDs). Recent works show that learning to incentivize other agents can promote cooperation in SSDs. However, we find that, with these incentivizing mechanisms, the team cooperation level does not converge and regularly oscillates between cooperation and defection during learning. We show that a second-order social dilemma resulting from the incentive mechanisms is the main reason for such fragile cooperation. We formally analyze the dynamics of second-order social dilemmas and find that a typical tendency of humans, called homophily, provides a promising solution. We propose a novel learning framework to encourage homophilic incentives and show that it achieves stable cooperation in both SSDs of public goods and tragedy of the commons.
Many cybersecurity breaches occur due to users not following good cybersecurity practices, chief among them being regulations for applying software patches to operating systems, updating applications, and maintaining strong passwords. We capture cybersecurity expectations on users as norms. We empirically investigate sanctioning mechanisms in promoting compliance with those norms as well as the detrimental effect of sanctions on the ability of users to complete their work. We realize these ideas in a game that emulates the decision making of workers in a research lab. Through a human-subject study, we find that whereas individual sanctions are more effective than group sanctions in achieving compliance and less detrimental on the ability of users to complete their work, individual sanctions offer significantly lower resilience especially for organizations comprising risk seekers. Our findings have implications for workforce training in cybersecurity.
Society is characterized by the presence of a variety of social norms: collective patterns of sanctioning that can prevent miscoordination and free-riding. Inspired by this, we aim to construct learning dynamics where potentially beneficial social norms can emerge. Since social norms are underpinned by sanctioning, we introduce a training regime where agents can access all sanctioning events but learning is otherwise decentralized. This setting is technologically interesting because sanctioning events may be the only available public signal in decentralized multi-agent systems where reward or policy-sharing is infeasible or undesirable. To achieve collective action in this setting we construct an agent architecture containing a classifier module that categorizes observed behaviors as approved or disapproved, and a motivation to punish in accord with the group. We show that social norms emerge in multi-agent systems containing this agent and investigate the conditions under which this helps them achieve socially beneficial outcomes.
Social norms characterize collective and acceptable group conducts in human society. Furthermore, some social norms emerge from interactions of agents or humans. To achieve agent autonomy and make norm satisfaction explainable, we include emotions into the normative reasoning process, which evaluate whether to comply or violate a norm. Specifically, before selecting an action to execute, an agent observes the environment and infer the state and consequences with its internal states after norm satisfaction or violation of a social norm. Both norm satisfaction and violation provoke further emotions, and the subsequent emotions affect norm enforcement. This paper investigates how modeling emotions affect the emergence and robustness of social norms via social simulation experiments. We find that an ability in agents to consider emotional responses to the outcomes of norm satisfaction and violation (1) promote norm compliance; and (2) improve societal welfare.