No Arabic abstract
We put forward a scheme to study the anisotropic magnetic couplings in Sr2IrO4 by mapping fully relativistic constrained noncollinear density functional theory including an on-site Hubbard U correction onto a general spin model Hamiltonian. This procedure allows for the simultaneous account and direct control of the lattice, spin and orbital interactions within a fully ab initio scheme. We compute the isotropic, single site anisotropy and Dzyaloshinskii-Moriya (DM) coupling parameters, and clarify that the origin of the canted magnetic state in Sr2IrO4 arises from the interplay between structural distortions and the competition between isotropic exchange and DM interactions. A complete magnetic phase diagram with respect to the tetragonal distortion and the rotation of IrO6 octahedra is constructed, revealing the presence of two types of canted to collinear magnetic transitions: a spin-flop transition with increasing tetragonal distortion and a complete quenching of the basal weak ferromagnetic moment below a critical octahedral rotation.
Antiferromagnetic spintronics actively introduces new principles of magnetic memory, in which the most fundamental spin-dependent phenomena, i.e. anisotropic magnetoresistance effects, are governed by an antiferromagnet instead of a ferromagnet. A general scenario of the antiferromagnetic anisotropic magnetoresistance effects mainly stems from the magnetocrystalline anisotropy related to spin-orbit coupling. Here we demonstrate magnetic field driven contour rotation of the fourfold anisotropic magnetoresistance in bare antiferromagnetic Sr2IrO4/SrTiO3 (001) thin films hosting a strong spin-orbit coupling induced Jeff=1/2 Mott state. Concurrently, an intriguing minimal in the magnetoresistance emerges. Through first principles calculations, the band-gap engineering due to rotation of the Ir isospins is revealed to be responsible for these emergent phenomena, different from the traditional scenario where relatively more conductive state was obtained usually when magnetic field was applied along the magnetic easy axis. Our findings demonstrate a new efficient route, i.e. via the novel Jeff=1/2 state, to realize controllable anisotropic magnetoresistance in antiferromagnetic materials.
The Co2V2O7 is recently reported to exhibit amazing magnetic field-induced magnetization plateaus and ferroelectricity, but its magnetic ground state remains ambiguous due to its structural complexity. Magnetometry measurements, and time-of-flight neutron powder diffraction (NPD) have been employed to study the structural and magnetic properties of Co2V2O7, which consists of two non-equivalent Co sites. Upon cooling below the Neel temperature TN = 6.3 K, we observe magnetic Bragg peaks at 2K in NPD which indicated the formation of long range magnetic order of Co2+ moments. After symmetry analysis and magnetic structure refinement, we demonstrate that Co2V2O7 possesses a complicated non-collinear magnetic ground state with Co moments mainly located in b-c plane and forming a non-collinear spin-chain-like structure along the c-axis. The ab initio calculations demonstrate that the non-collinear magnetic structure is more stable than various ferromagnetic states at low temperature. The non-collinear magnetic structure with canted up-up-down-down spin configuration is considered as the origin of magnetoelectric coupling in Co2V2O7 because the inequivalent exchange striction induced by the spin-exchange interaction between the neighboring spins is the driving force of ferroelectricity. Besides, it is found that the deviation of lattice parameters a and b is opposite below TN, while the lattice parameter c and stay almost constant below TN, evidencing the anisotropic magnetoelastic coupling in Co2V2O7.
Antiferromagnets have been generating intense interest in the spintronics community, owing to their intrinsic appealing properties like zero stray field and ultrafast spin dynamics. While the control of antiferromagnetic (AFM) orders has been realized by various means, applicably appreciated functionalities on the readout side of AFM-based devices are urgently desired. Here, we report the remarkably enhanced anisotropic magnetoresistance (AMR) as giant as ~ 160% in a simple resistor structure made of AFM Sr2IrO4 without auxiliary reference layer. The underlying mechanism for the giant AMR is an indispensable combination of atomic scale giant-MR-like effect and magnetocrystalline anisotropy energy, which was not accessed earlier. Furthermore, we demonstrate the bistable nonvolatile memory states that can be switched in-situ without the inconvenient heat-assisted procedure, and robustly preserved even at zero magnetic field, due to the modified interlayer coupling by 1% Ga-doping in Sr2IrO4. These findings represent a straightforward step toward the AFM spintronic devices.
It is commonly anticipated that an insulating state collapses in favor of an emergent metallic state at high pressures as the unit cell shrinks and the electronic bandwidth broadens to fill the insulating energy band gap. Here we report a rare insulating state that persists up to at least 185 GPa in the antiferromagnetic iridate Sr2IrO4, which is the archetypical spin-orbit-driven Jeff = 1/2 insulator. This study shows the electrical resistance of single-crystal Sr2IrO4 initially decreases with applied pressure, reaches a minimum in the range, 32 - 38 GPa, then abruptly rises to fully recover the insulating state with further pressure increases up to 185 GPa. Our synchrotron x-ray diffraction and Raman scattering data show the onset of the rapid increase in resistance is accompanied by a structural phase transition from the native tetragonal I41/acd phase to an orthorhombic Pbca phase (with much reduced symmetry) at 40.6 GPa. The clear-cut correspondence of these two anomalies is key to understanding the stability of the insulating state at megabar pressures: Pressure-induced, severe structural distortions prevent the expected metallization, despite the 26% volume compression attained at the highest pressure accessed in this study. Moreover, the resistance of Sr2IrO4 remains stable while the applied pressure is tripled from 61 GPa to 185 GPa. These results suggest that a novel type of electronic Coulomb correlation compensates the anticipated band broadening in strongly spin-orbit-coupled materials at megabar pressures.
Strong spin-orbit interaction in the two dimensional compound Sr2IrO4 leads to the formation of Jeff=1/2 isospins with unprecedented dynamics. In Raman scattering a continuum attributed to double spin scattering is observed. With higher excitation energy of the incident Laser this signal crosses over to an incoherent background. The characteristic energy scale of this cross over is identical to that of intensity resonance effects in phonon scattering. It is related to exciton-like orbital excitations that are also evident in resonant X-Ray scattering. The crossover and evolution of incoherent excitations are proposed to be due to their coupling to spin excitations. This signals a spin-orbit induced entanglement of spin, lattice and charge degrees of freedoms in Sr2IrO4.