Superpixelizing Binary MRF for Image Labeling Problems


Abstract in English

Superpixels have become prevalent in computer vision. They have been used to achieve satisfactory performance at a significantly smaller computational cost for various tasks. People have also combined superpixels with Markov random field (MRF) models. However, it often takes additional effort to formulate MRF on superpixel-level, and to the best of our knowledge there exists no principled approach to obtain this formulation. In this paper, we show how generic pixel-level binary MRF model can be solved in the superpixel space. As the main contribution of this paper, we show that a superpixel-level MRF can be derived from the pixel-level MRF by substituting the superpixel representation of the pixelwise label into the original pixel-level MRF energy. The resultant superpixel-level MRF energy also remains submodular for a submodular pixel-level MRF. The derived formula hence gives us a handy way to formulate MRF energy in superpixel-level. In the experiments, we demonstrate the efficacy of our approach on several computer vision problems.

Download