Do you want to publish a course? Click here

Chosen-plaintext attack of an image encryption scheme based on modified permutation-diffusion structure

104   0   0.0 ( 0 )
 Added by Yu Zhang
 Publication date 2015
and research's language is English




Ask ChatGPT about the research

Since the first appearance in Fridrichs design, the usage of permutation-diffusion structure for designing digital image cryptosystem has been receiving increasing research attention in the field of chaos-based cryptography. Recently, a novel chaotic Image Cipher using one round Modified Permutation-Diffusion pattern (ICMPD) was proposed. Unlike traditional permutation-diffusion structure, the permutation is operated on bit level instead of pixel level and the diffusion is operated on masked pixels, which are obtained by carrying out the classical affine cipher, instead of plain pixels in ICMPD. Following a textit{divide-and-conquer strategy}, this paper reports that ICMPD can be compromised by a chosen-plaintext attack efficiently and the involved data complexity is linear to the size of the plain-image. Moreover, the relationship between the cryptographic kernel at the diffusion stage of ICMPD and modulo addition then XORing is explored thoroughly.



rate research

Read More

133 - Chengqing Li , Dan Zhang , 2007
This paper studies the security of an image encryption scheme based on the Hill cipher and reports its following problems: 1) there is a simple necessary and sufficient condition that makes a number of secret keys invalid; 2) it is insensitive to the change of the secret key; 3) it is insensitive to the change of the plain-image; 4) it can be broken with only one known/chosen-plaintext; 5) it has some other minor defects.
Recently, an image encryption scheme based on a compound chaotic sequence was proposed. In this paper, the security of the scheme is studied and the following problems are found: (1) a differential chosen-plaintext attack can break the scheme with only three chosen plain-images; (2) there is a number of weak keys and some equivalent keys for encryption; (3) the scheme is not sensitive to the changes of plain-images; and (4) the compound chaotic sequence does not work as a good random number resource.
Recently Lin et al. proposed a method of using the underdetermined BSS (blind source separation) problem to realize image and speech encryption. In this paper, we give a cryptanalysis of this BSS-based encryption and point out that it is not secure against known/chosen-plaintext attack and chosen-ciphertext attack. In addition, there exist some other security defects: low sensitivity to part of the key and the plaintext, a ciphertext-only differential attack, divide-and-conquer (DAC) attack on part of the key. We also discuss the role of BSS in Lin et al.s efforts towards cryptographically secure ciphers.
In this paper, a word based chaotic image encryption scheme for gray images is proposed, that can be used in both synchronous and self-synchronous modes. The encryption scheme operates in a finite field where we have also analyzed its performance according to numerical precision used in implementation. We show that the scheme not only passes a variety of security tests, but also it is verified that the proposed scheme operates faster than other existing schemes of the same type even when using lightweight short key sizes.
This paper analyzes the security of an image encryption algorithm proposed by Ye and Huang [textit{IEEE MultiMedia}, vol. 23, pp. 64-71, 2016]. The Ye-Huang algorithm uses electrocardiography (ECG) signals to generate the initial key for a chaotic system and applies an autoblocking method to divide a plain image into blocks of certain sizes suitable for subsequent encryption. The designers claimed that the proposed algorithm is strong and flexible enough for practical applications. In this paper, we perform a thorough analysis of their algorithm from the view point of modern cryptography. We find it is vulnerable to the known plaintext attack: based on one pair of a known plain-image and its corresponding cipher-image, an adversary is able to derive a mask image, which can be used as an equivalent secret key to successfully decrypt other cipher-images encrypted under the same key with a non-negligible probability of 1/256. Using this as a typical counterexample, we summarize security defects in the design of the Ye-Huang algorithm. The lessons are generally applicable to many other image encryption schemes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا