Polynomial inequalities on the $pi/4$-circle sector


Abstract in English

A number of sharp inequalities are proved for the space ${mathcal P}left(^2Dleft(frac{pi}{4}right)right)$ of 2-homogeneous polynomials on ${mathbb R}^2$ endowed with the supremum norm on the sector $Dleft(frac{pi}{4}right):=left{e^{itheta}:thetain left[0,frac{pi}{4}right]right}$. Among the main results we can find sharp Bernstein and Markov inequalities and the calculation of the polarization constant and the unconditional constant of the canonical basis of the space ${mathcal P}left(^2Dleft(frac{pi}{4}right)right)$.

Download