Do you want to publish a course? Click here

The Swift UVOT serendipitous source catalogue

142   0   0.0 ( 0 )
 Added by Mathew James Page
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the first Swift Ultraviolet/Optical Telescope Serendipitous Source Catalogue (UVOTSSC). The catalogue was compiled from 23,059 Swift datasets taken within the first five years of observations with the Swift UVOT. A purpose-built processing pipeline, based around the standard Swift processing tools, was employed. The catalogue contains positions, photometry in three UV and three optical bands, morphological information and data quality flags. In total, the catalogue contains 6,200,016 unique sources of which more than 2 million have multiple observations in the catalogue.



rate research

Read More

Context. X-ray spectral variability analyses of active galactic nuclei (AGN) with moderate luminosities and redshifts typically show a softer when brighter behaviour. Such a trend has rarely been investigated for high-luminosity AGNs ($ L_{bol}gtrsim 10^{44}$ erg/s), nor for a wider redshift range (e.g. $0lesssim zlesssim 5$). Aims. We present an analysis of spectral variability based on a large sample of 2,700 quasars, measured at several different epochs, extracted from the fifth release of the XMM-Newton Serendipitous Source Catalogue. Methods. We quantified the spectral variability through the parameter $beta$ defined as the ratio between the change in the photon index $Gamma$ and the corresponding logarithmic flux variation, $beta=-DeltaGamma/Deltalog F_X$. Results. Our analysis confirms a softer when brighter behaviour for our sample, extending the previously found general trend to high luminosity and redshift. We estimate an ensemble value of the spectral variability parameter $beta=-0.69pm0.03$. We do not find dependence of $beta$ on redshift, X-ray luminosity, black hole mass or Eddington ratio. A subsample of radio-loud sources shows a smaller spectral variability parameter. There is also some change with the X-ray flux, with smaller $beta$ (in absolute value) for brighter sources. We also find significant correlations for a small number of individual sources, indicating more negative values for some sources.
We describe the production, properties and scientific potential of the XMM-Newton catalogue of serendipitous X-ray sources. The first version of this catalogue is nearing completion and is planned to be released before the end of 2002.
Variations of the X-ray spectral slope have been found in many Active Galactic Nuclei (AGN) at moderate luminosities and redshifts, typically showing a softer when brighter behaviour. However, similar studies are not usually performed for high-luminosity AGNs. We present an analysis of the spectral variability based on a large sample of quasars in wide intervals of luminosity and redshift, measured at several different epochs, extracted from the fifth release of the XMM Newton Serendipitous Source Catalogue. Our analysis confirms a softer when brighter trend also for our sample, extending to high luminosity and redshift the general behaviour previously found. These results can be understood in light of current spectral models, such as intrinsic variations of the X-ray primary radiation, or superposition with a constant reflection component.
The XMM-Newton Serendipitous Ultraviolet Source Survey (XMM-SUSS) is a catalogue of ultraviolet (UV) sources detected serendipitously by the Optical Monitor (XMM-OM) on-board the XMM-Newton observatory. The catalogue contains ultraviolet-detected sources collected from 2,417 XMM-OM observations in 1-6 broad band UV and optical filters, made between 24 February 2000 and 29 March 2007. The primary contents of the catalogue are source positions, magnitudes and fluxes in 1 to 6 passbands, and these are accompanied by profile diagnostics and variability statistics. The XMM-SUSS is populated by 753,578 UV source detections above a 3 sigma signal-to-noise threshold limit which relate to 624,049 unique objects. Taking account of substantial overlaps between observations, the net sky area covered is 29-54 square degrees, depending on UV filter. The magnitude distributions peak at 20.2, 20.9 and 21.2 in UVW2, UVM2 and UVW1 respectively. More than 10 per cent of sources have been visited more than once using the same filter during XMM-Newton operation, and > 20 per cent of sources are observed more than once per filter during an individual visit. Consequently, the scope for science based on temporal source variability on timescales of hours to years is broad. By comparison with other astrophysical catalogues we test the accuracy of the source measurements and define the nature of the serendipitous UV XMM-OM source sample. The distributions of source colours in the UV and optical filters are shown together with the expected loci of stars and galaxies, and indicate that sources which are detected in multiple UV bands are predominantly star-forming galaxies and stars of type G or earlier.
Thanks to the large collecting area (3 x ~1500 cm$^2$ at 1.5 keV) and wide field of view (30 across in full field mode) of the X-ray cameras on board the European Space Agency X-ray observatory XMM-Newton, each individual pointing can result in the detection of hundreds of X-ray sources, most of which are newly discovered. Recently, many improvements in the XMM-Newton data reduction algorithms have been made. These include enhanced source characterisation and reduced spurious source detections, refined astrometric precision, greater net sensitivity and the extraction of spectra and time series for fainter sources, with better signal-to-noise. Further, almost 50% more observations are in the public domain compared to 2XMMi-DR3, allowing the XMM-Newton Survey Science Centre (XMM-SSC) to produce a much larger and better quality X-ray source catalogue. The XMM-SSC has developed a pipeline to reduce the XMM-Newton data automatically and using improved calibration a new catalogue version has been produced from XMM-Newton data made public by 2013 Dec. 31 (13 years of data). Manual screening ensures the highest data quality. This catalogue is known as 3XMM. In the latest release, 3XMM-DR5, there are 565962 X-ray detections comprising 396910 unique X-ray sources. For the 133000 brightest sources, spectra and lightcurves are provided. For all detections, the positions on the sky, a measure of the quality of the detection, and an evaluation of the X-ray variability is provided, along with the fluxes and count rates in 7 X-ray energy bands, the total 0.2-12 keV band counts, and four hardness ratios. To identify the detections, a cross correlation with 228 catalogues is also provided for each X-ray detection. 3XMM-DR5 is the largest X-ray source catalogue ever produced. Thanks to the large array of data products, it is an excellent resource in which to find new and extreme objects.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا