No Arabic abstract
In this work we study a scalar field dark matter model with mass of the order of 100 MeV. We assume dark matter is produced in the process $e^-+e^+to phi +phi^*+gamma$, that, in fact, could be a background for the standard process $e^-+e^+to u +bar u+gamma$ extensively studied at LEP. We constrain the chiral couplings, $C_L$ and $C_R$, of the dark matter with electrons through an intermediate fermion of mass $m_F=100$ GeV and obtain $C_L=0.1(0.25)$ and $C_R=0.25(0.1)$ for the best fit point of our $chi^2$ analysis. We also analyze the potential of ILC to detect this scalar dark matter for two configurations: (i) center of mass energy $sqrt{s}=500$ GeV and luminosity $mathcal{L}=250$ fb$^{-1}$, and (ii) center of mass energy $sqrt{s}=1$ TeV and luminosity $mathcal{L}=500$ fb$^{-1}$. The differences of polarized beams are also explored to better study the chiral couplings.
We discuss the lower limit on the mass of the neutralino $chi$ that can be obtained by combining data from $e^+e^-$ annihilation at LEP and elsewhere with astrophysical and theoretical considerations. Loopholes in the purely experimental analysis of ALEPH data from the Z peak and LEP 1.5, which appear when $mu<0$ for certain values of the sneutrino mass $m_{tilde u}$ and the ratio $tanbeta$ of supersymmetric Higgs vacuum expectation values, may be largely or totally excluded by data from lower-energy $e^+e^-$ data, the hypothesis that most of the cosmological dark matter consists of $chi$ particles, and the assumption that electroweak symmetry breaking is triggered by radiative corrections due to a heavy top quark. The combination of these inputs imposes $m_{chi} ge 21.4~gev$, if soft supersymmetry-breaking masses are assumed to be universal at the grand-unification scale.
Neutrino and dark matter experiments with large-volume ($gtrsim 1$ ton) detectors can provide excellent sensitivity to signals induced by energetic light dark matter coming from the present universe. Taking boosted dark matter as a concrete example of energetic light dark matter, we scrutinize two representative search channels, electron scattering and proton scattering including deep inelastic scattering processes, in the context of elastic and inelastic boosted dark matter, in a completely detector-independent manner. In this work, a dark gauge boson is adopted as the particle to mediate the interactions between the Standard Model particles and boosted dark matter. We find that the signal sensitivity of the two channels highly depends on the (mass-)parameter region to probe, so search strategies and channels should be designed sensibly especially at the earlier stage of experiments. In particular, the contribution from the boosted-dark-matter-initiated deep inelastic scattering can be subleading (important) compared to the quasi-elastic proton scattering, if the mass of the mediator is below (above) $mathcal{O}$(GeV). We demonstrate how to practically perform searches and relevant analyses, employing example detectors such as DarkSide-20k, DUNE, Hyper-Kamiokande, and DeepCore, with their respective detector specifications taken into consideration. For other potential detectors we provide a summary table, collecting relevant information, from which similar studies can be fulfilled readily.
We consider, in a model-independent framework, the potential for observing dark matter in neutrino detectors through the interaction $bar{f} p to e^+ n$, where $f$ is a dark fermion. Operators of dimension six or less are considered, and constraints are placed on their coefficients using the dark matter lifetime and its decays to states which include $gamma$ rays or $e^+e^-$ pairs. After these constraints are applied, there remains one operator which can possibly contribute to $bar{f} p to e^+ n$ in neutrino detectors at an observable level. We then consider the results from the Super-Kamiokande relic supernova neutrino search and find that Super-K can probe the new physics scale of this interaction up to $O(100mbox{ TeV})$.
We study a light thermal scalar dark matter (DM) model with a light scalar mediator mixed with the standard model Higgs boson, including both the theoretical bounds and the current experimental constraints. The thermal scalar DM with the mass below a few GeV is usually strongly constrained by the observation of CMB and/or indirect detection experiments because the leading annihilation mode is s-wave. However, we find that two parameter regions still remain, which are the resonant annihilation region and the forbidden annihilation region. For the both cases, the higher partial waves dominantly contribute to the annihilation at the freeze-out era, and the constraint from the cosmological observation is weaker. We consider typical cases of these regions quantitatively, mainly focusing on the mixing angle and the mass of the new particles. Finally, we also discuss the testability of this model at future experiments.
We explore the potential for the direct detection of light fermionic dark matter in neutrino detectors. We consider the possible observation of the process $bar{f} p to e^+ n$, where $f$ is a dark matter fermion, in a model-independent manner. All operators of dimension six or lower which can contribute to this process are listed, and we place constraints on these operators from decays of $f$ which contain $gamma$ rays or electrons. One operator is found which is sufficiently weakly constrained that it could give observable interactions in neutrino detectors. We find that Super-Kamiokande can probe the new physics scale for this operator up to $O(100{TeV})$.