Do you want to publish a course? Click here

Synthetic gauge fields and Weyl point in Time-Reversal Invariant Acoustic Systems

200   0   0.0 ( 0 )
 Added by Meng Xiao
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Inspired by the discovery of quantum hall effect and topological insulator, topological properties of classical waves start to draw worldwide attention. Topological non-trivial bands characterized by non-zero Chern numbers are realized with external magnetic field induced time reversal symmetry breaking or dynamic modulation. Due to the absence of Faraday-like effect, the breaking of time reversal symmetry in an acoustic system is commonly realized with moving background fluids, and hence drastically increases the engineering complexity. Here we show that we can realize effective inversion symmetry breaking and effective gauge field in a reduced two-dimensional system by structurally engineering interlayer couplings, achieving an acoustic analog of the topological Haldane model. We then find and demonstrate unidirectional backscattering immune edge states. We show that the synthetic gauge field is closely related to the Weyl points in the three-dimensional band structure.



rate research

Read More

Charge-density waves (CDWs) in Weyl semimetals (WSMs) have been shown to induce an exotic axionic insulating phase in which the sliding mode (phason) of the CDW acts as a dynamical axion field, giving rise to a large positive magneto-conductance. In this work, we predict that dynamical strain can induce a bulk orbital magnetization in time-reversal- (TR-) invariant WSMs that are gapped by a CDW. We term this effect the dynamical piezomagnetic effect (DPME). Unlike in [J. Gooth et al, Nature 575, 315 (2019)], the DPME introduced in this work occurs in a bulk-constant (i.e., static and spatially homogeneous in the bulk) CDW, and does not rely on fluctuations, such as a phason. By studying the low-energy effective theory and a minimal tight-binding (TB) model, we find that the DPME originates from an effective valley axion field that couples the electromagnetic gauge field with a strain-induced pseudo-gauge field. We further find that the DPME has a discontinuous change at a critical value of the phase of the CDW order parameter. We demonstrate that, when there is a jump in the DPME, the surface of the system undergoes a topological quantum phase transition (TQPT), while the bulk remains gapped. Hence, the DPME provides a bulk signature of the boundary TQPT in a TR-invariant Weyl-CDW.
In planar tilted Dirac cone systems, the tilt parameter can be made space-dependent by either a perpendicular displacement field, or by chemical substitution in certain systems. We show that the symmetric partial derivative of the tilt parameter generates non-Abelian synthetic gauge fields in these systems. The small velocity limit of these gauge forces corresponds to Rashba and Dresselhaus spin-orbit couplings. At the classical level, the same symmetric spatial derivatives of tilt contribute to conservative, Lorentz-type and friction-like forces. The velocity dependent forces are odd with respect to tilt and therefore have opposite signs in the two valleys when the system is inversion symmetric. Furthermore, toggling the chemical potential between the valence and conduction bands reverses the sign of the all these classical forces, which indicates these forces couple to the electric charge of the carriers. As such, these forces are natural extensions of the electric and magnetic forces in the particular geometry of the tilted Dirac cone systems.
122 - Jiabin Yu , Chao-Xing Liu 2021
Electrons in low-temperature solids are governed by the non-relativistic Schr$ddot{o}$dinger equation, since the electron velocities are much slower than the speed of light. Remarkably, the low-energy quasi-particles given by electrons in various materials can behave as relativistic Dirac/Weyl fermions that obey the relativistic Dirac/Weyl equation. We refer to these materials as Dirac/Weyl materials, which provide a tunable platform to test relativistic quantum phenomena in table-top experiments. More interestingly, different types of physical fields in these Weyl/Dirac materials, such as magnetic fluctuations, lattice vibration, strain, and material inhomogeneity, can couple to the relativistic quasi-particles in a similar way as the $U(1)$ gauge coupling. As these fields do not have gauge-invariant dynamics in general, we refer to them as pseudo-gauge fields. In this chapter, we overview the concept and physical consequences of pseudo-gauge fields in Weyl/Dirac materials. In particular, we will demonstrate that pseudo-gauge fields can provide a unified understanding of a variety of physical phenomena, including chiral zero modes inside a magnetic vortex core of magnetic Weyl semimetals, a giant current response at magnetic resonance in magnetic topological insulators, and piezo-electromagnetic response in time-reversal invariant systems. These phenomena are deeply related to various concepts in high-energy physics, such as chiral anomaly and axion electrodynamics.
124 - Yihao Yang , Yong Ge , Rujiang Li 2021
The phenomenon of negative refraction generally requires negative refractive indices or phase discontinuities, which can be realized using metamaterials or metasurfaces. Recent theories have proposed a novel mechanism for negative refraction based on synthetic gauge fields, which affect classical waves as if they were charged particles in electromagnetic fields, but this has not hitherto been demonstrated in experiment. Here, we report on the experimental demonstration of gauge-field-induced negative refraction in a twisted bilayer acoustic metamaterial. The bilayer twisting produces a synthetic gauge field for sound waves propagating within a projected two-dimensional geometry, with the magnitude of the gauge field parameterized by the choice of wavenumber along the third dimension. Waveguiding with backward propagating modes is also demonstrated in a trilayer configuration that implements strong gauge fields. These results provide an alternative route to achieving negative refraction in synthetic materials.
333 - Alberto Cortijo 2014
Here we describe how certain classes of two dimensional topological insulators, including the CdTe$/$HgTe quantum wells, display a new type of optical activity in two dimensions similar to the magneto-optical Kerr effect in the quantum Hall effect. This optical activity is characterized by a genuine Kerr angle and it is compatible with time reversal symmetry, being thus fundamentally different to other known types of time reversal invariant optical activity. The term responsible of such optical activity, having the form of $(mathbf{E}cdotpartialmathbf{B}/partial t-mathbf{B}cdotpartialmathbf{E}/partial t)$, can be considered a time reversal invariant counterpart of the magneto-electric term $mathbf{E}cdotmathbf{B}$. The microscopical origin of this response is a chiral non-minimal coupling between electrons and the external electromagnetic field. This optical activity constitutes a proof of principle that there is possible to find systems that are time reversal invariant displaying a genuine Kerr effect.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا