Do you want to publish a course? Click here

Non-LTE analysis of neutral copper in the late-type metal-poor stars

110   0   0.0 ( 0 )
 Added by Hongliang Yan
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigated the copper abundances for $64$ late-type stars in the Galactic disk and halo with effective temperatures from $5400$ K to $6700$ K and [Fe/H] from $-1.88$ to $-0.17$. For the first time, the copper abundances are derived using both local thermodynamic equilibrium (LTE) and non-local thermodynamic equilibrium (non-LTE) calculations. High resolution ($R > 40,000$), high signal-to-noise ratio ($S/N > 100$) spectra from the FOCES spectrograph are used. The atmospheric models are calculated based on the MAFAGS opacity sampling code. All the abundances are derived using the spectrum synthesis methods. Our results indicate that the non-LTE effects of copper are important for metal-poor stars, showing a departure of $sim 0.17$ dex at the metallicity $sim -1.5$. We also find that the copper abundances derived from non-LTE calculations are enhanced compared with those from LTE. The enhancements show clear dependence on the metallicity, which gradually increase with decreasing [Fe/H] for our program stars, leading to a flatter distribution of [Cu/Fe] with [Fe/H] than previous work. There is a hint that the thick- and thin-disk stars have different behaviors in [Cu/Fe], and a bending for disk stars may exist.



rate research

Read More

Older GCE models predict [K/Fe] ratios as much as 1 dex lower than those inferred from stellar observations. Abundances of potassium are mainly based on analyses of the 7698 $AA$ resonance line, and the discrepancy between models and observations is in part caused by the LTE assumption. We study the statistical equilibrium of KI, focusing on the non-LTE effects on the $7698 AA$ line. We aim to determine how non-LTE abundances of K can improve the analysis of its chemical evolution, and help to constrain the yields of models. We construct a model atom that employs the most up-to-date data. In particular, we calculate and present inelastic e+K collisional excitation cross-sections from the convergent close-coupling and the $B$-Spline $R$-matrix methods, and H+K collisions from the two-electron model. We constructed a fine grid of non-LTE abundance corrections that span $4000<teff / rm{K}<8000$, $0.50<lgg<5.00$, $-5.00<feh<+0.50$, and applied the corrections to abundances from the literature. In concordance with previous studies, we find severe non-LTE effects in the $7698 AA$ line, which is stronger in non-LTE with abundance corrections that can reach $sim-0.7,dex$. We explore the effects of atmospheric inhomogeneity by computing a full 3D non-LTE stellar spectrum of KI for a test star. We find that 3D is necessary to predict a correct shape of the resonance 7698 $AA$ line, but the line strength is similar to that found in 1D non-LTE. Our non-LTE abundance corrections reduce the scatter and change the cosmic trends of literature K abundances. In the regime [Fe/H]$lesssim-1.0$ the non-LTE abundances show a good agreement with the GCE model with yields from rotating massive stars. The reduced scatter of the non-LTE corrected abundances of a sample of solar twins shows that line-by-line differential analysis techniques cannot fully compensate for systematic modelling errors.
Aluminium plays a key role in studies of the chemical enrichment of the Galaxy and of globular clusters. However, strong deviations from LTE (non-LTE) are known to significantly affect the inferred abundances in giant and metal-poor stars. We present NLTE modeling of aluminium using recent and accurate atomic data, in particular utilizing new transition rates for collisions with hydrogen atoms, without the need for any astrophysically calibrated parameters. For the first time, we perform 3D NLTE modeling of aluminium lines in the solar spectrum. We also compute and make available extensive grids of abundance corrections for lines in the optical and near-infrared using one-dimensional model atmospheres, and apply grids of precomputed departure coefficients to direct line synthesis for a set of benchmark stars with accurately known stellar parameters. Our 3D NLTE modeling of the solar spectrum reproduces observed center-to-limb variations in the solar spectrum of the 7835 {AA} line as well as the mid-infrared photospheric emission line at 12.33 micron. We infer a 3D NLTE solar photospheric abundance of A(Al) = 6.43+-0.03, in exact agreement with the meteoritic abundance. We find that abundance corrections vary rapidly with stellar parameters; for the 3961 {AA} resonance line, corrections are positive and may be as large as +1 dex, while corrections for subordinate lines generally have positive sign for warm stars but negative for cool stars. Our modeling reproduces the observed line profiles of benchmark K-giants, and we find abundance corrections as large as -0.3 dex for Arcturus. Our analyses of four metal-poor benchmark stars yield consistent abundances between the 3961 {AA} resonance line and lines in the UV, optical and near-infrared regions. Finally, we discuss implications for the galactic chemical evolution of aluminium.
325 - P. Bonifacio 2009
We make use of three dimensional hydrodynamical simulations to investigate the effects of granulation on the Cu I lines of Mult. 1 in the near UV, at 324.7 nm and 327.3 nm. These lines remain strong even at very low metallicity and provide the opportunity to study the chemical evolution of Cu in the metal-poor populations. We find very strong granulation effects on these lines. In terms of abundances the neglect of such effects can lead to an overestimate of the A(Cu) by as much as 0.8 dex in dwarf stars. Comparison of our computations with stars in the metal-poor Globular Clusters NGC 6752 and NGC 6397, show that there is a systematic discrepancy between the copper abundances derived from Mult. 2 in TO stars and those derived in giant stars of the same cluster from the lines of Mult. 2 at at 510.5 nm and 587.2 nm. We conclude that the Cu I resonance lines are not reliable indicators of Cu abundance and we believe that an investigations of departures from LTE is mandatory to make use of these lines.
We explore the nature of carbon-rich ([C/Fe]_{1D,LTE} > +0.7), metal-poor ([Fe/H_{1D,LTE}] < -2.0) stars in the light of post 1D,LTE literature analyses, which provide 3D-1D and NLTE-LTE corrections for iron, and 3D-1D corrections for carbon (from the CH G-band, the only indicator at lowest [Fe/H]). High-excitation C~I lines are used to constrain 3D,NLTE corrections of G-band analyses. Corrections to the 1D,LTE compilations of Yoon et al. and Yong et al. yield 3D,LTE and 3D,NLTE Fe and C abundances. The number of CEMP-no stars in the Yoon et al. compilation (plus eight others) decreases from 130 (1D,LTE) to 68 (3D,LTE) and 35 (3D,NLTE). For stars with -4.5 < [Fe/H] < -3.0 in the compilation of Yong et al., the corresponding CEMP-no fractions change from 0.30 to 0.15 and 0.12, respectively. We present a toy model of the coalescence of pre-stellar clouds of the two populations that followed chemical enrichment by the first zero-heavy-element stars: the C-rich, hyper-metal-poor and the C-normal, very-metal-poor populations. The model provides a reasonable first-order explanation of the distribution of the 1D,LTE abundances of CEMP-no stars in the A(C) and [C/Fe] vs. [Fe/H] planes, in the range -4.0 < [Fe/H] < -2.0. The Yoon et al. CEMP Group I contains a subset of 19 CEMP-no stars (14% of the group), 4/9 of which are binary, and which have large [Sr/Ba]_{1D,LTE} values. The data support the conjectures of Hansen et al. (2016b, 2019) and Arentsen et al. (2018) that these stars may have experienced enrichment from AGB stars and/or spinstars.
Hydrogen Balmer lines are commonly used as spectroscopic effective temperature diagnostics of late-type stars. However, the absolute accuracy of classical methods that are based on one-dimensional (1D) hydrostatic model atmospheres and local thermodynamic equilibrium (LTE) is still unclear. To investigate this, we carry out 3D non-LTE calculations for the Balmer lines, performed, for the first time, over an extensive grid of 3D hydrodynamic STAGGER model atmospheres. For H$alpha$, H$beta$, and H$gamma$, we find significant 1D non-LTE versus 3D non-LTE differences (3D effects): the outer wings tend to be stronger in 3D models, particularly for H$gamma$, while the inner wings can be weaker in 3D models, particularly for H$alpha$. For H$alpha$, we also find significant 3D LTE versus 3D non-LTE differences (non-LTE effects): in warmer stars ($T_{text{eff}}approx6500$K) the inner wings tend to be weaker in non-LTE models, while at lower effective temperatures ($T_{text{eff}}approx4500$K) the inner wings can be stronger in non-LTE models; the non-LTE effects are more severe at lower metallicities. We test our 3D non-LTE models against observations of well-studied benchmark stars. For the Sun, we infer concordant effective temperatures from H$alpha$, H$beta$, and H$gamma$; however the value is too low by around 50K which could signal residual modelling shortcomings. For other benchmark stars, our 3D non-LTE models generally reproduce the effective temperatures to within $1sigma$ uncertainties. For H$alpha$, the absolute 3D effects and non-LTE effects can separately reach around 100K, in terms of inferred effective temperatures. For metal-poor turn-off stars, 1D LTE models of H$alpha$ can underestimate effective temperatures by around 150K. Our 3D non-LTE model spectra are publicly available, and can be used for more reliable spectroscopic effective temperature determinations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا