Do you want to publish a course? Click here

Ultra-low phase noise all-optical microwave generation setup based on commercial devices

104   0   0.0 ( 0 )
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper, we present a very simple design based on commercial devices for the all-optical generation of ultra-low phase noise microwave signals. A commercial, fibered femtosecond laser is locked to a laser that is stabilized to a commercial ULE Fabry-Perot cavity. The 10 GHz microwave signal extracted from the femtosecond laser output exhibits a single sideband phase noise $mathcal{L}(f)=-104 mathrm{dBc}/mathrm{Hz}$ at 1 Hz Fourier frequency, at the level of the best value obtained with such microwave photonics laboratory experiments cite{Fortier2011}. Close-to-the-carrier ultra-low phase noise microwave signals will now be available in laboratories outside the frequency metrology field, opening up new possibilities in various domains.



rate research

Read More

133 - J. Millo , R. Boudot , M. Lours 2009
In this letter, we report on all-optical fiber approach to the generation of ultra-low noise microwave signals. We make use of two erbium fiber mode-locked lasers phase locked to a common ultra-stable laser source to generate an 11.55 GHz signal with an unprecedented relative phase noise of -111 dBc/Hz at 1 Hz from the carrier.The residual frequency instability of the microwave signals derived from the two optical frequency combs is below 2.3 10^(-16) at 1s and about 4 10^(-19) at 6.5 10^(4)s (in 5 Hz bandwidth, three days continuous operation).
We report on the realization of a high sensitivity RF noise measurement scheme to study small current fluctuations of mesoscopic systems at milliKelvin temperatures. The setup relies on the combination of an interferometric ampli- fication scheme and a quarter-wave impedance transformer, allowing the mea- surement of noise power spectral densities with GHz bandwith up to five orders of magnitude below the amplifier noise floor. We simultaneously measure the high frequency conductance of the sample by derivating a portion of the signal to a microwave homodyne detection. We describe the principle of the setup, as well as its implementation and calibration. Finally, we show that our setup allows to fully characterize a subnanosecond on-demand single electron source. More generally, its sensitivity and bandwith make it suitable for applications manipulating single charges at GHz frequencies.
We present an optical frequency divider based on a 200 MHz repetition rate Er:fiber mode-locked laser that, when locked to a stable optical frequency reference, generates microwave signals with absolute phase noise that is equal to or better than cryogenic microwave oscillators. At 1 Hz offset from a 10 GHz carrier, the phase noise is below -100 dBc/Hz, limited by the optical reference. For offset frequencies > 10 kHz, the phase noise is shot noise limited at -145 dBc/Hz. An analysis of the contribution of the residual noise from the Er:fiber optical frequency divider is also presented.
We demonstrate a remote microwave/radio-frequency (RF) transfer technique based on the stabilization of a fiber link using a fiber-loop optical-microwave phase detector (FLOM-PD). This method compensates for the excess phase fluctuations introduced in fiber transfer by direct phase comparison between the optical pulse train reflected from the remote site and the local microwave/RF signal using the FLOM-PD. This enables sub-fs resolution and long-term stable link stabilization while having wide timing detection range and less demand in fiber dispersion compensation. The demonstrated relative frequency instability between 2.856-GHz RF oscillators separated by a 2.3-km fiber link is $7.6 times 10^{-18}$ and $6.5 times 10^{-19}$ at 1000 s and 82500 s averaging time, respectively.
We investigate the impact of pulse interleaving and optical amplification on the spectral purity of microwave signals generated by photodetecting the pulsed output of an Er:fiber-based optical frequency comb. It is shown that the microwave phase noise floor can be extremely sensitive to delay length errors in the interleaver, and the contribution of the quantum noise from optical amplification to the phase noise can be reduced ~10 dB for short pulse detection. We exploit optical amplification, in conjunction with high power handling modified uni-traveling carrier photodetectors, to generate a phase noise floor on a 10 GHz carrier of -175 dBc/Hz, the lowest ever demonstrated in the photodetection of a mode-locked fiber laser. At all offset frequencies, the photodetected 10 GHz phase noise performance is comparable to or better than the lowest phase noise results yet demonstrated with stabilized Ti:sapphire frequency combs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا