Do you want to publish a course? Click here

Optimal Control of a Collective Migration Model

123   0   0.0 ( 0 )
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

Collective migration of animals in a cohesive group is rendered possible by a strategic distribution of tasks among members: some track the travel route, which is time and energy-consuming, while the others follow the group by interacting among themselves. In this paper, we study a social dynamics system modeling collective migration. We consider a group of agents able to align their velocities to a global target velocity, or to follow the group via interaction with the other agents. The balance between these two attractive forces is our control for each agent, as we aim to drive the group to consensus at the target velocity. We show that the optimal control strategies in the case of final and integral costs consist of controlling the agents whose velocities are the furthest from the target one: these agents sense only the target velocity and become leaders, while the uncontrolled ones sense only the group, and become followers. Moreover, in the case of final cost, we prove an Inactivation principle: there exist initial conditions such that the optimal control strategy consists of letting the system evolve freely for an initial period of time, before acting with full control on the agent furthest from the target velocity.



rate research

Read More

We consider a production-inventory control model with finite capacity and two different production rates, assuming that the cumulative process of customer demand is given by a compound Poisson process. It is possible at any time to switch over from the different production rates but it is mandatory to switch-off when the inventory process reaches the storage maximum capacity. We consider holding, production, shortage penalty and switching costs. This model was introduced by Doshi, Van Der Duyn Schouten and Talman in 1978. Our aim is to minimize the expected discounted cumulative costs up to infinity over all admissible switching strategies. We show that the optimal cost functions for the different production rates satisfy the corresponding Hamilton-Jacobi-Bellman system of equations in a viscosity sense and prove a verification theorem. The way in which the optimal cost functions solve the different variational inequalities gives the switching regions of the optimal strategy, hence it is stationary in the sense that depends only on the current production rate and inventory level. We define the notion of finite band strategies and derive, using scale functions, the formulas for the different costs of the band strategies with one or two bands. We also show that there are examples where the switching strategy presented by Doshi et al. is not the optimal strategy.
183 - Hailiang Liu , Xuping Tian 2020
We present a data-driven optimal control approach which integrates the reported partial data with the epidemic dynamics for COVID-19. We use a basic Susceptible-Exposed-Infectious-Recovered (SEIR) model, the model parameters are time-varying and learned from the data. This approach serves to forecast the evolution of the outbreak over a relatively short time period and provide scheduled controls of the epidemic. We provide efficient numerical algorithms based on a generalized Pontryagin Maximum Principle associated with the optimal control theory. Numerical experiments demonstrate the effective performance of the proposed model and its numerical approximations.
We propose and study a new mathematical model of the human immunodeficiency virus (HIV). The main novelty is to consider that the antibody growth depends not only on the virus and on the antibodies concentration but also on the uninfected cells concentration. The model consists of five nonlinear differential equations describing the evolution of the uninfected cells, the infected ones, the free viruses, and the adaptive immunity. The adaptive immune response is represented by the cytotoxic T-lymphocytes (CTL) cells and the antibodies with the growth function supposed to be trilinear. The model includes two kinds of treatments. The objective of the first one is to reduce the number of infected cells, while the aim of the second is to block free viruses. Firstly, the positivity and the boundedness of solutions are established. After that, the local stability of the disease free steady state and the infection steady states are characterized. Next, an optimal control problem is posed and investigated. Finally, numerical simulations are performed in order to show the behavior of solutions and the effectiveness of the two incorporated treatments via an efficient optimal control strategy.
A re-entrant manufacturing system producing a large number of items and involving many steps can be approximately modeled by a hyperbolic partial differential equation (PDE) according to mass conservation law with respect to a continuous density of items on a production process. The mathematic model is a typical nonlinear and nonlocal PDE and the cycle time depends nonlinearly on the work in progress. However, the nonlinearity brings mathematic and engineering difficulties in practical application. In this work, we address the optimal control based on the linearized system model and in order to improve the model and control accuracy, a modified system model taking into account the re-entrant degree of the product is utilized to reflect characteristics of small-scale and large-scale multiple re-entrant manufacturing systems. In this work, we solve the optimal output reference tracking problem through combination of variation approach and state feedback internal model control (IMC) method. Numerical example on optimal boundary influx for step-like demand rate is presented. In particular, the demand rates are generated by an known exosystem.
In this paper, we use the optimal control methodology to control a flexible, elastic Cosserat rod. An inspiration comes from stereotypical movement patterns in octopus arms, which are observed in a variety of manipulation tasks, such as reaching or fetching. To help uncover the mechanisms underlying these observed morphologies, we outline an optimal control-based framework. A single octopus arm is modeled as a Hamiltonian control system, where the continuum mechanics of the arm is modeled after the Cosserat rod theory, and internal, distributed muscle forces and couples are considered as controls. First order necessary optimality conditions are derived for an optimal control problem formulated for this infinite dimensional system. Solutions to this problem are obtained numerically by an iterative forward-backward algorithm. The state and adjoint equations are solved in a dynamic simulation environment, setting the stage for studying a broader class of optimal control problems. Trajectories that minimize control effort are demonstrated and qualitatively compared with observed behaviors.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا