No Arabic abstract
An extended database of experimental data is needed to address uncertainties of the nuclear-physics input parameters for Hauser-Feshbach calculations. Especially $alpha$+nucleus optical model potentials at low energies are not well known. The in-beam technique with an array of high-purity germanium (HPGe) detectors was successfully applied to the measurement of absolute cross sections of an ($alpha$,$gamma$) reaction on a heavy nucleus at sub-Coulomb energies. The total and partial cross-section values were measured by means of in-beam $gamma$-ray spectroscopy. Total and partial cross sections were measured at four different $alpha$-particle energies from $E_alpha = 10.5$ MeV to $E_alpha = 12$ MeV. The measured total cross-section values are in excellent agreement with previous results obtained with the activation technique, which proves the validity of the applied method. The experimental data was compared to Hauser-Feshbach calculations using the nuclear reaction code TALYS. A modified version of the semi-microscopic $alpha$+nucleus optical model potential OMP 3, as well as modified proton and $gamma$ widths, are needed in order to obtain a good agreement between experimental data and theory. It is found, that a model using a local modification of the nuclear-physics input parameters simultaneously reproduces total cross sections of the $^{112}$Sn($alpha$,$gamma$) and $^{112}$Sn($alpha$,p) reactions. The measurement of partial cross sections turns out to be very important in this case in order to apply the correct $gamma$-ray strength function in the Hauser-Feshbach calculations. The model also reproduces cross-section values of $alpha$-induced reactions on $^{106}$Cd, as well as of ($alpha$,n) reactions on $^{115,116}$Sn, hinting at a more global character of the obtained nuclear-physics input.
Partial cross sections of the $^{89}$Y(p,$gamma$)$^{90}$Zr reaction have been measured to investigate the $gamma$-ray strength function in the neutron-magic nucleus $^{90}$Zr. For five proton energies between $E_p=3.65$ MeV and $E_p=4.70$ MeV, partial cross sections for the population of seven discrete states in $^{90}$Zr have been determined by means of in-beam $gamma$-ray spectroscopy. Since these $gamma$-ray transitions are dominantly of $E1$ character, the present measurement allows an access to the low-lying dipole strength in $^{90}$Zr. A $gamma$-ray strength function based on the experimental data could be extracted, which is used to describe the total and partial cross sections of this reaction by Hauser-Feshbach calculations successfully. Significant differences with respect to previously measured strength functions from photoabsorption data point towards deviations from the Brink-Axel hypothesis relating the photo-excitation and de-excitation strength functions.
Solar neutrino fluxes depend both on astrophysical and on nuclear physics inputs, namely on the cross sections of the reactions responsible for neutrino production inside the Solar core. While the flux of solar 8B neutrinos has been recently measured at Superkamiokande with a 3.5% uncertainty and a precise measurement of 7Be neutrino flux is foreseen in the next future, the predicted fluxes are still affected by larger errors. The largest nuclear physics uncertainty to determine the fluxes of 8B and 7Be neutrinos comes from the 3He(alpha,gamma)7Be reaction. The uncertainty on its S-factor is due to an average discrepancy in results obtained using two different experimental approaches: the detection of the delayed gamma rays from 7Be decay and the measurement of the prompt gamma emission. Here we report on a new high precision experiment performed with both techniques at the same time. Thanks to the low background conditions of the Gran Sasso LUNA accelerator facility, the cross section has been measured at Ecm = 170, 106 and 93 keV, the latter being the lowest interaction energy ever reached. The S-factors from the two methods do not show any discrepancy within the experimental errors. An extrapolated S(0)= 0.560+/-0.017 keV barn is obtained. Moreover, branching ratios between the two prompt gamma-transitions have been measured with 5-8% accuracy.
Background: In the island of inversion, ground states of neutron-rich $sd$-shell nuclei exhibit strong admixtures of intruder configurations from the $fp$ shell. The nucleus $^{30}$Mg, located at the boundary of the island of inversion, serves as a cornerstone to track the structural evolution as one approaches this region. Purpose: Spin-parity assignments for excited states in $^{30}$Mg, especially negative-parity levels, have yet to be established. In the present work, the nuclear structure of $^{30}$Mg was investigated by in-beam $gamma$-ray spectroscopy mainly focusing on firm spin-parity determinations. Method: High-intensity rare-isotope beams of $^{31}$Mg, $^{32}$Mg, $^{34}$Si, and $^{35}$P bombarded a Be target to induce nucleon removal reactions populating states in $^{30}$Mg. $gamma$ rays were detected by the state-of-the-art $gamma$-ray tracking array GRETINA. For the direct one-neutron removal reaction, final-state exclusive cross sections and parallel momentum distributions were deduced. Multi-nucleon removal reactions from different projectiles were exploited to gain complementary information. Results: With the aid of the parallel momentum distributions, an updated level scheme with revised spin-parity assignments was constructed. Spectroscopic factors associated with each state were also deduced. Conclusions: Results were confronted with large-scale shell-model calculations using two different effective interactions, showing excellent agreement with the present level scheme. However, a marked difference in the spectroscopic factors indicates that the full delineation of the transition into the island of inversion remains a challenge for theoretical models.
The cross section of the $^{62}$Ni($n,gamma$) reaction was measured with the time-of-flight technique at the neutron time-of-flight facility n_TOF at CERN. Capture kernels of 42 resonances were analyzed up to 200~keV neutron energy and Maxwellian averaged cross sections (MACS) from $kT=5-100$ keV were calculated. With a total uncertainty of 4.5%, the stellar cross section is in excellent agreement with the the KADoNiS compilation at $kT=30$ keV, while being systematically lower up to a factor of 1.6 at higher stellar temperatures. The cross section of the $^{63}$Ni($n,gamma$) reaction was measured for the first time at n_TOF. We determined unresolved cross sections from 10 to 270 keV with a systematic uncertainty of 17%. These results provide fundamental constraints on $s$-process production of heavier species, especially the production of Cu in massive stars, which serve as the dominant source of Cu in the solar system.
The $beta$ intensity distributions of the decays of $^{100text{gs},100text{m}}$Nb and $^{102text{gs},102text{m}}$Nb have been determined using the Total Absorption $gamma$-Ray Spectroscopy technique. The JYFLTRAP double Penning trap system was employed to disentangle the isomeric states involved, lying very close in energy, in a campaign of challenging measurements performed with the Decay Total Absorption $gamma$-ray Spectrometer at the Ion Guide Isotope Separator On-Line facility in Jyvaskyla. The low-spin isomeric state of each niobium case was populated through the decay of the zirconium parent, that was treated as a contaminant. We have applied a method to extract this contamination, and additionally we have obtained $beta$ intensity distributions for these zirconium decays. The $beta$-strength distributions evaluated with these results were compared with calculations in quasiparticle random-phase approximation, suggesting a prolate configuration for the ground states of $^{100,102}$Zr. The footprint of the Pandemonium effect was found when comparing our results for the analyses of the niobium isotopes with previous decay data. The $beta$-intensities of the decay of $^{102text{m}}$Nb were obtained for the first time. A careful evaluation of the uncertainties was carried out, and the consistency of our results was validated taking advantage of the segmentation of our spectrometer. The final results were used as input in reactor summation calculations. A large impact on antineutrino spectrum calculations was already reported and here we detail the significant impact on decay heat calculations.