Do you want to publish a course? Click here

The benchmark black hole in NGC 4258: dynamical models from high-resolution two-dimensional stellar kinematics

196   0   0.0 ( 0 )
 Added by Daniel Alf Drehmer
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

NGC 4258 is the galaxy with the most accurate (maser-based) determination for the mass of the supermassive black hole (SMBH) in its nucleus. In this work we present a two-dimensional mapping of the stellar kinematics in the inner 3.0 x 3.0 arcsec = 100 x 100 pc of NGC 4258 using adaptative-optics observations obtained with the Near-Infrared Integral Field Spectrograph of the GEMINI North telescope at a 0.11 arcsec (4 pc) angular resolution. The observations resolve the radius of influence of the SMBH, revealing an abrupt increase in the stellar velocity dispersion within 10 pc from the nucleus, consistent with the presence of a SMBH there. Assuming that the galaxy nucleus is in a steady state and that the velocity dispersion ellipsoid is aligned with a cylindrical coordinate system, we constructed a Jeans anisotropic dynamical model to fit the observed kinematics distribution. Our dynamical model assumes that the galaxy has axial symmetry and is constructed using the multi-gaussian expansion method to parametrize the observed surface brightness distribution. The Jeans dynamical model has three free parameters: the mass of the central SMBH, the mass-luminosity ratio of the galaxy and the anisotropy of the velocity distribution. We test two types of models: one with constant velocity anisotropy, and another with variable anisotropy. The model that best reproduces the observed kinematics was obtained considering that the galaxy has radially varying anisotropy, being the best-fitting parameters with 3$sigma$ significance $M_bullet=4.8^{+0.8}_{-0.9}times 10^7,{rm M_odot}$ and $Gamma_k = 4.1^{+0.4}_{-0.5}$. This value for the mass of the SMBH is just 25 per cent larger than that of the maser determination and 50 per cent larger that a previous stellar dynamical determination obtained via Schwarzschild models.



rate research

Read More

The mass of a supermassive black hole ($M_mathrm{BH}$) is a fundamental property that can be obtained through observational methods. Constraining $M_mathrm{BH}$ through multiple methods for an individual galaxy is important for verifying the accuracy of different techniques, and for investigating the assumptions inherent in each method. NGC 4151 is one of those rare galaxies for which multiple methods can be used: stellar and gas dynamical modeling because of its proximity ($D=15.8pm0.4$ Mpc from Cepheids), and reverberation mapping because of its active accretion. In this work, we re-analyzed $H-$band integral field spectroscopy of the nucleus of NGC 4151 from Gemini NIFS, improving the analysis at several key steps. We then constructed a wide range of axisymmetric dynamical models with the new orbit-superposition code Forstand. One of our primary goals is to quantify the systematic uncertainties in $M_mathrm{BH}$ arising from different combinations of the deprojected density profile, inclination, intrinsic flattening, and mass-to-light ratio. As a consequence of uncertainties on the stellar luminosity profile arising from the presence of the AGN, our constraints on mbh are rather weak. Models with a steep central cusp are consistent with no black hole; however, in models with more moderate cusps, the black hole mass lies within the range of $0.25times10^7,M_odot lesssim M_mathrm{BH} lesssim 3times10^7,M_odot$. This measurement is somewhat smaller than the earlier analysis presented by Onken et al., but agrees with previous $M_mathrm{BH}$ values from gas dynamical modeling and reverberation mapping. Future dynamical modeling of reverberation data, as well as IFU observations with JWST, will aid in further constraining $M_mathrm{BH}$ in NGC 4151.
We determine the mass of the black hole at the center of the spiral galaxy NGC 4258 by constructing axisymmetric dynamical models of the galaxy. These models are constrained by high spatial resolution imaging and long-slit spectroscopy of the nuclear region obtained with the {em Hubble Space Telescope}, complemented by ground-based observations extending to larger radii. Our best mass estimate is $MBH = (3.3 pm 0.2) times 10^7 MSun $ for a distance of 7.28 Mpc (statistical errors only). This is within 15% of $ (3.82pm 0.01) times 10^7 MSun$, the mass determined from the kinematics of water masers (rescaled to the same distance) assuming they are in Keplerian rotation in a warped disk. The construction of accurate dynamical models of NGC 4258 is somewhat compromised by an unresolved active nucleus and color gradients, the latter caused by variations in the stellar population and/or obscuring dust. These problems are not present in the $sim 30$ other black hole mass determinations from stellar dynamics that have been published by us and other groups; thus, the relatively close agreement between the stellar dynamical mass and the maser mass in NGC 4258 enhances our confidence in the black hole masses determined in other galaxies from stellar dynamics using similar methods and data of comparable quality.
We determine the mass of the nuclear black hole ($M$) in NGC 3706, an early type galaxy with a central surface brightness minimum arising from an apparent stellar ring, which is misaligned with respect to the galaxys major axis at larger radii. We fit new HST/STIS and archival data with axisymmetric orbit models to determine $M$, mass-to-light ratio ($Upsilon_V$), and dark matter halo profile. The best-fit model parameters with 1$sigma$ uncertainties are $M = (6.0^{+0.7}_{-0.9}) times 10^8 M_{scriptscriptstyle odot}$ and $Upsilon_V = 6.0 pm 0.2 M_{scriptscriptstyle odot} L_{{scriptscriptstyle odot},V}^{-1}$ at an assumed distance of 46 Mpc. The models are inconsistent with no black hole at a significance of $Deltachi^2 = 15.4$ and require a dark matter halo to adequately fit the kinematic data, but the fits are consistent with a large range of plausible dark matter halo parameters. The ring is inconsistent with a population of co-rotating stars on circular orbits, which would produce a narrow line-of-sight velocity distribution (LOSVD). Instead, the rings LOSVD has a small value of $|V|/sigma$, the ratio of mean velocity to velocity dispersion. Based on the observed low $|V|/sigma$, our orbit modeling, and a kinematic decomposition of the ring from the bulge, we conclude that the stellar ring contains stars that orbit in both directions. We consider potential origins for this unique feature, including multiple tidal disruptions of stellar clusters, a change in the gravitational potential from triaxial to axisymmetric, resonant capture and inclining of orbits by a binary black hole, and multiple mergers leading to gas being funneled to the center of the galaxy.
We present multi-object spectroscopic observations of 23 globular cluster candidates (GCCs) in the prototypical megamaser galaxy NGC 4258, carried out with the OSIRIS instrument at the 10.4 m Gran Telescopio Canarias. The candidates have been selected based on the ($u^* - i^prime$) versus ($i^prime - K_s$) diagram, in the first application of the uiks-method to a spiral galaxy. In the spectroscopy presented here, 70% of the candidates are confirmed as globular clusters. Our results validate the efficiency of the uiks-method in the sparser GC systems of spirals, and given the downward correction to the total number of GCs, the agreement of the galaxy with the correlations between black hole mass, and total number and mass of GCs is actually improved. We find that the GCs, mostly metal-poor, co-rotate with the HI disk, even at large galactocentric distances.
We present Atacama Large Millimeter/submillimeter Array (ALMA) Cycle 3 observations of CO(2-1) emission from the circumnuclear disk in the E/S0 galaxy NGC 1332 at 0.044 resolution. The disk exhibits regular rotational kinematics and central high-velocity emission (+/-500 km/s) consistent with the presence of a compact central mass. We construct models for a thin, dynamically cold disk in the gravitational potential of the host galaxy and black hole, and fit the beam-smeared model line profiles directly to the ALMA data cube. Model fits successfully reproduce the disk kinematics out to r=200 pc. Fitting models just to spatial pixels within projected r=50 pc of the nucleus (two times larger than the black holes gravitational radius of influence), we find M_BH=6.64(-0.63,+0.65)*10^8 solar masses. This observation demonstrates ALMAs powerful capability to determine the masses of supermassive black holes by resolving gas kinematics on small angular scales in galaxy nuclei.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا