Do you want to publish a course? Click here

Besov-Type Spaces with Variable Smoothness and Integrability

148   0   0.0 ( 0 )
 Added by Dachun Yang
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

In this article, the authors introduce Besov-type spaces with variable smoothness and integrability. The authors then establish their characterizations, respectively, in terms of $varphi$-transforms in the sense of Frazier and Jawerth, smooth atoms or Peetre maximal functions, as well as a Sobolev-type embedding. As an application of their atomic characterization, the authors obtain a trace theorem of these variable Besov-type spaces.



rate research

Read More

112 - A. I. Tyulenev 2016
The paper puts forward new Besov spaces of variable smoothness $B^{varphi_{0}}_{p,q}(G,{t_{k}})$ and $widetilde{B}^{l}_{p,q,r}(Omega,{t_{k}})$ on rough domains. A~domain~$G$ is either a~bounded Lipschitz domain in~$mathbb{R}^{n}$ or the epigraph of a~Lipschitz function, a~domain~$Omega$ is an $(varepsilon,delta)$-domain. These spaces are shown to be the traces of the spaces $B^{varphi_{0}}_{p,q}(mathbb{R}^{n},{t_{k}})$ and $widetilde{B}^{l}_{p,q,r}(mathbb{R}^{n},{t_{k}})$ on domains $G$ and~$Omega$, respectively. The extension operator $operatorname{Ext}_{1}:B^{varphi_{0}}_{p,q}(G,{t_{k}}) to B^{varphi_{0}}_{p,q}(mathbb{R}^{n},{t_{k}})$ is linear, the operator $operatorname{Ext}_{2}:widetilde{B}^{l}_{p,q,r}(Omega,{t_{k}}) to widetilde{B}^{l}_{p,q,r}(mathbb{R}^{n},{t_{k}})$ is nonlinear. As a~corollary, an exact description of the traces of 2-microlocal Besov-type spaces and weighted Besov-type spaces on rough domains is obtained.
166 - A. I. Tyulenev 2015
The paper is concerned with Besov spaces of variable smoothness $B^{varphi_{0}}_{p,q}(mathbb{R}^{n},{t_{k}})$, in which the norms are defined in terms of convolutions with smooth functions. A relation is found between the spaces $B^{varphi_{0}}_{p,q}(mathbb{R}^{n},{t_{k}})$ and the spaces $widetilde{B}^{l}_{p,q,r}(mathbb{R}^{n},{t_{k}})$, which were introduced earlier by the author.
Some Besov-type spaces $B^{s,tau}_{p,q}(mathbb{R}^n)$ can be characterized in terms of the behavior of the Fourier--Haar coefficients. In this article, the authors discuss some necessary restrictions for the parameters $s$, $tau$, $p$, $q$ and $n$ of this characterization. Therefore, the authors measure the regularity of the characteristic function $mathcal X$ of the unit cube in $mathbb{R}^n$ via the Besov-type spaces $B^{s,tau}_{p,q}(mathbb{R}^n)$. Furthermore, the authors study necessary and sufficient conditions such that the operation $langle f, mathcal{X} rangle$ generates a continuous linear functional on $B^{s,tau}_{p,q}(mathbb{R}^n)$.
A pair of dual frames with almost exponentially localized elements (needlets) are constructed on $RR_+^d$ based on Laguerre functions. It is shown that the Triebel-Lizorkin and Besov spaces induced by Laguerre expansions can be characterized in terms of respective sequence spaces that involve the needlet coefficients.
Let $p(cdot): mathbb R^nto(0,infty)$ be a variable exponent function satisfying the globally log-Holder continuous condition. In this article, the authors first introduce the variable weak Hardy space on $mathbb R^n$, $W!H^{p(cdot)}(mathbb R^n)$, via the radial grand maximal function, and then establish its radial or non-tangential maximal function characterizations. Moreover, the authors also obtain various equivalent characterizations of $W!H^{p(cdot)}(mathbb R^n)$, respectively, by means of atoms, molecules, the Lusin area function, the Littlewood-Paley $g$-function or $g_{lambda}^ast$-function. As an application, the authors establish the boundedness of convolutional $delta$-type and non-convolutional $gamma$-order Calderon-Zygmund operators from $H^{p(cdot)}(mathbb R^n)$ to $W!H^{p(cdot)}(mathbb R^n)$ including the critical case $p_-={n}/{(n+delta)}$, where $p_-:=mathopmathrm{ess,inf}_{xin rn}p(x).$
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا