Do you want to publish a course? Click here

Entanglement Entropy Near Kondo-Destruction Quantum Critical Points

181   0   0.0 ( 0 )
 Added by Jedediah Pixley
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the impurity entanglement entropy $S_e$ in quantum impurity models that feature a Kondo-destruction quantum critical point (QCP) arising from a pseudogap in the conduction-band density of states or from coupling to a bosonic bath. On the local-moment (Kondo-destroyed) side of the QCP, the entanglement entropy contains a critical component that can be related to the order parameter characterizing the quantum phase transition. In Kondo models describing a spin-$Simp$, $S_e$ assumes its maximal value of $ln(2Simp+1)$ at the QCP and throughout the Kondo phase, independent of features such as particle-hole symmetry and under- or over-screening. In Anderson models, $S_e$ is nonuniversal at the QCP, and at particle-hole symmetry, rises monotonically on passage from the local-moment phase to the Kondo phase; breaking this symmetry can lead to a cusp peak in $S_e$ due to a divergent charge susceptibility at the QCP. Implications of these results for quantum critical systems and quantum dots are discussed.



rate research

Read More

Electronic localization-delocalization has played a prominent role in realizing beyond-Landau metallic quantum critical points. It typically involves local spins induced by strong correlations. Systems that contain local multipolar moments offer new platforms to explore such quantum criticality. Here, we use an analytical method at zero temperature to study the fate of an SU(4) spin-orbital Kondo state in a multipolar Bose-Fermi Kondo model, which provides an effective description of a multipolar Kondo lattice. We show that a generic trajectory in the parameter space contains two quantum critical points, which are associated with the destruction of the Kondo entanglement in the orbital and spin channels respectively. Our asymptotically exact results reveal a global phase diagram, provides the theoretical basis for the notion of sequential Kondo destruction, and point to new forms of quantum criticality that may still be realized in a variety of strongly correlated metals.
We study high frequency response functions, notably the optical conductivity, in the vicinity of quantum critical points (QCPs) by allowing for both detuning from the critical coupling and finite temperature. We consider general dimensions and dynamical exponents. This leads to a unified understanding of sum rules. In systems with emergent Lorentz invariance, powerful methods from conformal field theory allow us to fix the high frequency response in terms of universal coefficients. We test our predictions analytically in the large-N O(N) model and using the gauge-gravity duality, and numerically via Quantum Monte Carlo simulations on a lattice model hosting the interacting superfluid-insulator QCP. In superfluid phases, interacting Goldstone bosons qualitatively change the high frequency optical conductivity, and the corresponding sum rule.
We address the quantum-critical behavior of a two-dimensional itinerant ferromagnetic systems described by a spin-fermion model in which fermions interact with close to critical bosonic modes. We consider Heisenberg ferromagnets, Ising ferromagnets, and the Ising nematic transition. Mean-field theory close to the quantum critical point predicts a superconducting gap with spin-triplet symmetry for the ferromagnetic systems and a singlet gap for the nematic scenario. Studying fluctuations in this ordered phase using a nonlinear sigma model, we find that these fluctuations are not suppressed by any small parameter. As a result, we find that a superconducting quasi-long-range order is still possible in the Ising-like models but long-range order is destroyed in Heisenberg ferromagnets.
Recent studies of the global phase diagram of quantum-critical heavy-fermion metals prompt consideration of the interplay between the Kondo interactions and quantum fluctuations of the local moments alone. Toward this goal, we study a Bose-Fermi Kondo model (BFKM) with Ising anisotropy in the presence of a local transverse field that generates quantum fluctuations in the local-moment sector. We apply the numerical renormalization-group method to the case of a sub-Ohmic bosonic bath exponent and a constant conduction-electron density of states. Starting in the Kondo phase at zero transverse-field, there is a smooth crossover with increasing transverse field from a fully screened to a fully polarized impurity spin. By contrast, if the system starts in its localized phase, then increasing the transverse field causes a continuous, Kondo-destruction transition into the partially polarized Kondo phase. The critical exponents at this quantum phase transition exhibit hyperscaling and take essentially the same values as those of the BFKM in zero transverse field. The many-body spectrum at criticality varies continuously with the bare transverse field, indicating a line of critical points. We discuss implications of these results for the global phase diagram of the Kondo lattice model.
Quantum criticality in certain heavy-fermion metals is believed to go beyond the Landau framework of order-parameter fluctuations. In particular, there is considerable evidence for Kondo destruction: a disappearance of the static Kondo singlet amplitude that results in a sudden reconstruction of Fermi surface across the quantum critical point and an extra critical energy scale. This effect can be analyzed in terms of a dynamical interplay between the Kondo and RKKY interactions. In the Kondo-destroyed phase, a well-defined Kondo resonance is lost, but Kondo singlet correlations remain at nonzero frequencies. This dynamical effect allows for mass enhancement in the Kondo-destroyed phase. Here, we elucidate the dynamical Kondo effect in Bose-Fermi Kondo/Anderson models, which unambiguously exhibit Kondo-destruction quantum critical points. We show that a simple physical quantity---the expectation value $langle {bf S}_{f} cdot {bf s}_{c} rangle$ for the dot product of the local ($f$) and conduction-electron ($c$) spins---varies continuously across such quantum critical points. A nonzero $langle {bf S}_{f} cdot {bf s}_{c} rangle$ manifests the dynamical Kondo effect that operates in the Kondo-destroyed phase. Implications are discussed for the stability of Kondo-destruction quantum criticality as well as the understanding of experimental results in quantum critical heavy-fermion metals.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا