Do you want to publish a course? Click here

Size distribution of islands according to 2D growth model with 2 kinds of diffusion atoms

172   0   0.0 ( 0 )
 Added by Ryo Yamauchi
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We simulated the growth of 2D islands with 2 kinds of diffusion atoms using the kinetic Monte- Carlo (kMC) method. As a result, we found that the slow atoms tend to create nuclei and determine the island volume distribution, along with additional properties such as island density. We also conducted a theoretical analysis using the rate equation of the point-island model to confirm these results.



rate research

Read More

57 - Siqi Lu , Lin Xie , Kang Lai 2020
Versatile quantum modes emerge for plasmon describing the collective oscillations of free electrons in metallic nanoparticles when the particle sizes are greatly reduced. Rather than traditional nanoscale study, the understanding of quantum plasmon desires extremal atomic control of the nanoparticles, calling for size dependent plasmon measurement over a series of nanoparticles with atomically adjustable atom number over several orders of magnitude. Here we report the N dependent plasmonic evolution of atomically size selected gold particles with N= 100 70000 using electron energy loss (EEL) spectroscopy in a scanning transmission electron microscope. The EEL mapping assigns a feature at 2.7 eV as the bulk plasmon and another at 2.4 eV as surface plasmon, which evolution reveals three regimes. When N decreases from 70000 to 887, the bulk plasmon stays unchanged while the surface plasmon exhibits a slight red shift from 2.4 to 2.3 eV. It can be understood by the dominance of classical plasmon physics and electron boundary scattering induced retardation. When N further decreases from 887 to 300, the bulk plasmon disappears totally and the surface plasmon shows a steady blueshift, which indicates that the quantum confinement emerges and modifies the intraband transition. When N 100 300, the plasmon is split to three fine features, which is attributed to superimposed single electron transitions between the quantized molecular like energy level by the time dependent density functional theory calculations. The surface plasmons excitation ratio has a scaling law with an exponential dependence on N ( N^0.669), essentially the square of the radius. A unified evolution picture from the classical to quantum, molecular plasmon is thus demonstrated.
324 - Ziwei Xu , Changshuai Shi , Lu Qiu 2018
The graphene islands, formed as different sizes, are crucial for the final quality of the formed graphene during the CVD growth either as the nucleation seeds or as the build blocks for larger graphene domains. Extensive efforts had been devoted to the size or the morphology control while fewer works were reported on the moving dynamics of these graphene islands as well as the associate influences to their coalescence during the CVD Growth of graphene. In this study, based on the self-developed C-Cu empirical potential, we performed systematic molecular dynamics simulations on the surface moving of three typical graphene islands CN (N = 24, 54 and 96) on the Cu (111) surface and discovered their different behaviors in sinking, lateral translation and rotation at the atomic scale owning to their different sizes, which were proved to bring forth significant impacts to their coalescences and the final quality of the as-formed larger domains of graphene. This study would deepen our atomistic insights into the mechanisms of the graphene CVD growth and provide significant theoretical guidelines to its controlled synthesis.
We present a combined experimental and theoretical study on the rotationally inelastic scattering of OH ($X,^2Pi_{3/2}, J=3/2, f$) radicals with the collision partners He, Ne, Ar, Kr, Xe, and D$_2$ as a function of the collision energy between $sim 70$ cm$^{-1}$ and 400~cm$^{-1}$. The OH radicals are state selected and velocity tuned prior to the collision using a Stark decelerator, and field-free parity-resolved state-to-state inelastic relative scattering cross sections are measured in a crossed molecular beam configuration. For all OH-rare gas atom systems excellent agreement is obtained with the cross sections predicted by close-coupling scattering calculations based on accurate emph{ab initio} potential energy surfaces. This series of experiments complements recent studies on the scattering of OH radicals with Xe [Gilijamse emph{et al.}, Science {bf 313}, 1617 (2006)], Ar [Scharfenberg emph{et al.}, Phys. Chem. Chem. Phys. {bf 12}, 10660 (2010)], He, and D$_2$ [Kirste emph{et al.}, Phys. Rev. A {bf 82}, 042717 (2010)]. A comparison of the relative scattering cross sections for this set of collision partners reveals interesting trends in the scattering behavior.
It is well known that water inside hydrophobic nano-channels diffuses faster than bulk water. Recent theoretical studies have shown that this enhancement depends on the size of the hydrophobic nanochannels. However, experimental evidence of this dependence is lacking. Here, by combining two-dimensional Nuclear Magnetic Resonance (NMR) diffusion-relaxation D-T2eff spectroscopy in the stray field of a superconducting magnet, and Molecular Dynamics (MD) simulations, we analyze the size dependence of water dynamics inside carbon nanotubes (CNTs) of different diameters (1.1 nm to 6.0 nm), in the temperature range of 265K to 305K. Depending on the CNTs diameter, the nanotube water is shown to resolve in two or more tubular components acquiring different self-diffusion coefficients. Most notable, a favourable CNTs diameter range 3.0-4.5 nm is experimentally verified for the first time, in which water molecule dynamics at the centre of the CNTs exhibit distinctly non-Arrhenius behaviour, characterized by ultrafast diffusion and extraordinary fragility, a result of significant importance in the efforts to understand water behaviour in hydrophobic nanochannels.
We outline a method to slow paramagnetic atoms or molecules using pulsed magnetic fields. We also discuss the possibility of producing trapped particles by adiabatic deceleration of a magnetic trap. We present numerical simulation results for the slowing and trapping of molecular oxygen.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا