Do you want to publish a course? Click here

Critical Slowing Down of the Charge Carrier Dynamics at the Mott Metal-Insulator Transition

113   0   0.0 ( 0 )
 Added by Benedikt Hartmann
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on the dramatic slowing down of the charge carrier dynamics in a quasi-two-dimensional organic conductor, which can be reversibly tuned through the Mott metal-insulator transition (MIT). At the finite-temperature critical endpoint we observe a divergent increase of the resistance fluctuations accompanied by a drastic shift of spectral weight to low frequencies, demonstrating the critical slowing down of the order parameter (doublon density) fluctuations. The slow dynamics is accompanied by non-Gaussian fluctuations, indicative of correlated charge carrier dynamics. A possible explanation is a glassy freezing of the electronic system as a precursor of the Mott MIT.



rate research

Read More

The correlation-driven Mott transition is commonly characterized by a drop in resistivity across the insulator-metal phase boundary; yet, the complex permittivity provides a deeper insight into the microscopic nature. We investigate the frequency- and temperature-dependent dielectric response of the Mott insulator $kappa$-(BEDT-TTF)$_{2}$-Cu$_2$(CN)$_3$ when tuning from a quantum spin liquid into the Fermi-liquid state by applying external pressure and chemical substitution of the donor molecules. At low temperatures the coexistence region at the first-order transition leads to a strong enhancement of the quasi-static dielectric constant $epsilon_1$ when the effective correlations are tuned through the critical value. Several dynamical regimes are identified around the Mott point and vividly mapped through pronounced permittivity crossovers. All experimental trends are captured by dynamical mean-field theory of the single-band Hubbard model supplemented by percolation theory.
222 - S. Kettemann , E. R. Mucciolo , 2009
It is well-known that magnetic impurities can change the symmetry class of disordered metallic systems by breaking spin and time-reversal symmetry. At low temperature these symmetries can be restored by Kondo screening. It is also known that at the Anderson metal-insulator transition, wave functions develop multifractal fluctuations with power law correlations. Here, we consider the interplay of these two effects. We show that multifractal correlations open local pseudogaps at the Fermi energy at some random positions in space. When dilute magnetic impurities are at these locations, Kondo screening is strongly suppressed. We find that when the exchange coupling J is smaller than a certain value J*, the metal-insulator transition point extends to a critical region in the disorder strength parameter and to a band of critical states. The width of this critical region increases with a power of the concentration of magnetic impurities.
We utilize near-infrared pump and mid-infrared probe spectroscopy to investigate the ultrafast electronic response of pressurized VO$_2$. Distinct pump-probe signals and a pumping threshold behavior are observed even in the pressure-induced metallic state showing a noticeable amount of localized electronic states. Our results are consistent with a scenario of a bandwidth-controlled Mott-Hubbard transition.
Higher accuracy low temperature charge transport measurements in combination with precise X-ray diffraction experiment have allowed detecting the symmetry lowering in the single domain Tm0.19Yb0.81B12 crystals of the family of dodecaborides with metal-insulator transition. Basing on the fine structure analysis we discover formation of dynamic charge stripes within the semiconducting matrix of Tm0.19Yb0.81B12. The charge dynamics in these metallic nano-size conducting channels is characterized by broad-band optical spectroscopy that allowed estimating the frequency (~2.4 10^11 Hz) of quantum motion of the charge carriers. It is suggested that caused by cooperative Jahn-Teller effect in the boron sub-lattice, the large amplitude rattling modes of the Tm and Yb ions are responsible for modulation of the conduction band along [110] direction through the variation of 5d-2p hybridization of electron states.
The Mott insulator is the quintessential strongly correlated electronic state. We obtain complete insight into the physics of the two-dimensional Mott insulator by extending the slave-fermion (holon-doublon) description to finite temperatures. We first benchmark its predictions against state-of-the-art quantum Monte Carlo simulations, demonstrating quantitative agreement. Qualitatively, the short-ranged spin fluctuations both induce holon-doublon bound states and renormalize the charge sector to form the Hubbard bands. The Mott gap is understood as the charge gap renormalized downwards by these spin fluctuations. As temperature increases, the Mott gap closes before the charge gap, causing a pseudogap regime to appear naturally during the melting of the Mott insulator.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا