Phase reduction of a limit cycle oscillator perturbed by a strong amplitude-modulated high-frequency force


Abstract in English

The phase reduction method for a limit cycle oscillator subjected to a strong amplitude-modulated high-frequency force is developed. An equation for the phase dynamics is derived by introducing a new, effective phase response curve. We show that if the effective phase response curve is everywhere positive (negative), then an entrainment of the oscillator to an envelope frequency is possible only when this frequency is higher (lower) than the natural frequency of the oscillator. Also, by using the Pontryagin maximum principle, we have derived an optimal waveform of the perturbation that ensures an entrainment of the oscillator with minimal power. The theoretical results are demonstrated with the Stuart-Landau oscillator and model neurons.

Download