The electron-phonon processes of the nitrogen-vacancy center in diamond


Abstract in English

Applications of negatively charged nitrogen-vacancy center in diamond exploit the centers unique optical and spin properties, which at ambient temperature, are predominately governed by electron-phonon interactions. Here, we investigate these interactions at ambient and elevated temperatures by observing the motional narrowing of the centers excited state spin resonances. We determine that the centers Jahn-Teller dynamics are much slower than currently believed and identify the vital role of symmetric phonon modes. Our results have pronounced implications for centers diverse applications (including quantum technology) and for understanding its fundamental properties.

Download