Do you want to publish a course? Click here

Upper bounds for the attractor dimension of damped Navier-Stokes equations in $mathbb R^2$

137   0   0.0 ( 0 )
 Added by Alexei Ilyin A.
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

We consider finite energy solutions for the damped and driven two-dimensional Navier--Stokes equations in the plane and show that the corresponding dynamical system possesses a global attractor. We obtain upper bounds for its fractal dimension when the forcing term belongs to the whole scale of homogeneous Sobolev spaces from -1 to 1



rate research

Read More

The dependence of the fractal dimension of global attractors for the damped 3D Euler--Bardina equations on the regularization parameter $alpha>0$ and Ekman damping coefficient $gamma>0$ is studied. We present explicit upper bounds for this dimension for the case of the whole space, periodic boundary conditions, and the case of bounded domain with Dirichlet boundary conditions. The sharpness of these estimates when $alphato0$ and $gammato0$ (which corresponds in the limit to the classical Euler equations) is demonstrated on the 3D Kolmogorov flows on a torus.
We prove existence of the global attractor of the damped and driven Euler--Bardina equations on the 2D sphere and on arbitrary domains on the sphere and give explicit estimates of its fractal dimension in terms of the physical parameters.
314 - Alexei Ilyin , Sergey Zelik 2020
We prove existence of the global attractor of the damped and driven 2D Euler--Bardina equations on the torus and give an explicit two-sided estimate of its dimension that is sharp as $alphato0^+$.
In a previous work, we presented a class of initial data to the three dimensional, periodic, incompressible Navier-Stokes equations, generating a global smooth solution although the norm of the initial data may be chosen arbitrarily large. The aim of this article is twofold. First, we adapt the construction to the case of the whole space: we prove that if a certain nonlinear function of the initial data is small enough, in a Koch-Tataru type space, then there is a global solution to the Navier-Stokes equations. We provide an example of initial data satisfying that nonlinear smallness condition, but whose norm is arbitrarily large in $ C^{-1}$. Then we prove a stability result on the nonlinear smallness assumption. More precisely we show that the new smallness assumption also holds for linear superpositions of translated and dilated iterates of the initial data, in the spirit of a construction by the authors and H. Bahouri, thus generating a large number of different examples.
In this paper we give optimal lower bounds for the blow-up rate of the $dot{H}^{s}left(mathbb{T}^3right)$-norm, $frac{1}{2}<s<frac{5}{2}$, of a putative singular solution of the Navier-Stokes equations, and we also present an elementary proof for a lower bound on blow-up rate of the Sobolev norms of possible singular solutions to the Euler equations when $s>frac{5}{2}$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا