Do you want to publish a course? Click here

Multiwavelength observations of a partially eruptive filament on 2011 September 8

257   0   0.0 ( 0 )
 Added by Qingmin Zhang
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper, we report our multiwavelength observations of a partial filament eruption event in NOAA active region 11283 on 2011 September 8. A magnetic null point and the corresponding spine and separatrix surface are found in the active region. Beneath the null point, a sheared arcade supports the filament along the highly complex and fragmented polarity inversion line. After being activated, the sigmoidal filament erupted and split into two parts. The major part rose at the speeds of 90$-$150 km s$^{-1}$ before reaching the maximum apparent height of $sim$115 Mm. Afterwards, it returned to the solar surface in a bumpy way at the speeds of 20$-$80 km s$^{-1}$. The rising and falling motions were clearly observed in the extreme-ultravoilet (EUV), UV, and H$alpha$ wavelengths. The failed eruption of the main part was associated with an M6.7 flare with a single hard X-ray source. The runaway part of the filament, however, separated from and rotated around the major part for $sim$1 turn at the eastern leg before escaping from the corona, probably along large-scale open magnetic field lines. The ejection of the runaway part resulted in a very faint coronal mass ejection (CME) that propagated at an apparent speed of 214 km s$^{-1}$ in the outer corona. The filament eruption also triggered transverse kink-mode oscillation of the adjacent coronal loops in the same AR. The amplitude and period of the oscillation were 1.6 Mm and 225 s. Our results are important for understanding the mechanisms of partial filament eruptions and provide new constraints to theoretical models. The multiwavelength observations also shed light on space weather prediction.



rate research

Read More

We investigate whether flux cancellation is responsible for the formation of a very massive filament resulting in the spectacular 2011 June 7 eruption. We analyse and quantify the amount of flux cancellation that occurs in NOAA AR 11226 and its two neighbouring ARs (11227 & 11233) using line-of-sight magnetograms from the Heliospheric Magnetic Imager. During a 3.6-day period building up to the filament eruption, 1.7 x 10^21 Mx, 21% of AR 11226s maximum magnetic flux, was cancelled along the polarity inversion line (PIL) where the filament formed. If the flux cancellation continued at the same rate up until the eruption then up to 2.8 x 10^21 Mx (34% of the AR flux) may have been built into the magnetic configuration that contains the filament plasma. The large flux cancellation rate is due to an unusual motion of the positive polarity sunspot, which splits, with the largest section moving rapidly towards the PIL. This motion compresses the negative polarity and leads to the formation of an orphan penumbra where one end of the filament is rooted. Dense plasma threads above the orphan penumbra build into the filament, extending its length, and presumably injecting material into it. We conclude that the exceptionally strong flux cancellation in AR 11226 played a significant role in the formation of its unusually massive filament. In addition, the presence and coherent evolution of bald patches in the vector magnetic field along the PIL suggests that the magnetic field configuration supporting the filament material is that of a flux rope.
The objectives of the present study is to provide a better physical understanding of the complex inter-relation and evolution of several solar coronal features comprising a double-peak flare, a coronal dimming caused by a CME, a CME-driven compression, and a fast-mode wave. For the first time, the evolution of an asymmetric eruptive filament is analysed in simultaneous SUMER spectroscopic and TRACE and EIT imaging data. We use imaging observations from EIT and TRACE in the 195A channel and spectroscopic observations from the CDS in a rastering and SUMER in a sit-and-stare observing mode. The SUMER spectra cover spectral lines with formation temperatures from logT(K) ~ 4.0 to 6.1. Although the event was already analysed in two previous studies, our analysis brings a wealth of new information on the dynamics and physical properties of the observed phenomena. We found that the dynamic event is related to a complex flare with two distinct impulsive peaks, one according to the GOES classification as C1.1 and the second - C1.9. The first energy release triggers a fast-mode wave and a CME with a clear CME driven compression ahead of it. This activity is related to, or possibly caused, by an asymmetric filament eruption. The filament is observed to rise with its leading edge moving at a speed of ~300 km/s detected both in the SUMER and CDS data. The rest of the filament body moves at only ~150 km/s while untwisting. No signature is found of the fast-mode wave in the SUMER data, suggesting that the plasma disturbed by the wave had temperatures above 600 000 K. The erupting filament material is found to emit only in spectral lines at transition region temperatures. Earlier identification of a coronal response detected in the Mg X 609.79 A line is found to be caused by a blend from the O IV 609.83 A line.
Coronal disturbances associated with solar flares, such as H$alpha$ Moreton waves, X-ray waves, and extreme ultraviolet (EUV) coronal waves are discussed herein in relation to magnetohydrodynamics fast-mode waves or shocks in the corona. To understand the mechanism of coronal disturbances, full-disk solar observations with high spatial and temporal resolution over multiple wavelengths are of crucial importance. We observed a filament eruption, whose shape is like a dandelion, associated with the M1.6 flare that occurred on 2011 February 16 in the H$alpha$ images taken by the Flare Monitoring Telescope at Ica University, Peru. We derive the three-dimensional velocity field of the erupting filament. We also identify winking filaments that are located far from the flare site in the H$alpha$ images, whereas no Moreton wave is observed. By comparing the temporal evolution of the winking filaments with those of the coronal wave seen in the extreme ultraviolet images data taken by the Atmospheric Imaging Assembly on board the {it Solar Dynamics Observatory} and by the Extreme Ultraviolet Imager on board the {it Solar Terrestrial Relations Observatory-Ahead}, we confirm that the winking filaments were activated by the EUV coronal wave.
We study a sequence of eruptive events including filament eruption, a GOES C4.3 flare and a coronal mass ejection. We aim to identify the possible trigger(s) and precursor(s) of the filament destabilisation; investigate flare kernel characteristics; flare ribbons/kernels formation and evolution; study the interrelation of the filament-eruption/flare/coronal-mass-ejection phenomena as part of the integral active-region magnetic field configuration; determine Halpha line profile evolution during the eruptive phenomena. Multi-instrument observations are analysed including Halpha line profiles, speckle images at Halpha-0.8 AA and Halpha+0.8 AA from IBIS at DST/NSO, EUV images and magnetograms from the SDO, coronagraph images from STEREO and the X-ray flux observations from FERMI and GOES. We establish that the filament destabilisation and eruption are the main trigger for the flaring activity. A surge-like event with a circular ribbon in one of the filament footpoints is determined as the possible trigger of the filament destabilisation. Plasma draining in this footpoint is identified as the precursor for the filament eruption. A magnetic flux emergence prior to the filament destabilisation followed by a high rate of flux cancelation of 1.34$times10^{16}$ Mx s$^{-1}$ is found during the flare activity. The flare X-ray lightcurves reveal three phases that are found to be associated with three different ribbons occurring consecutively. A kernel from each ribbon is selected and analysed. The kernel lightcurves and H alpha line profiles reveal that the emission increase in the line centre is stronger than that in the line wings. A delay of around 5-6 mins is found between the increase in the line centre and the occurrence of red asymmetry. Only red asymmetry is observed in the ribbons during the impulsive phases. Blue asymmetry is only associated with the dynamic filament.
207 - Y. Li , X. Sun , M. D. Ding 2016
Solar flares are one of the most energetic events in the solar atmosphere. It is widely accepted that flares are powered by magnetic reconnection in the corona. An eruptive flare is usually accompanied by a coronal mass ejection, both of which are probably driven by the eruption of a magnetic flux rope (MFR). Here we report an eruptive flare on 2016 March 23 observed by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory. The extreme-ultraviolet imaging observations exhibit the clear rise and eruption of an MFR. In particular, the observations reveal solid evidence for magnetic reconnection from both the corona and chromosphere during the flare. Moreover, weak reconnection is observed before the start of the flare. We find that the preflare weak reconnection is of tether-cutting type and helps the MFR to rise slowly. Induced by a further rise of the MFR, strong reconnection occurs in the rise phases of the flare, which is temporally related to the MFR eruption. We also find that the magnetic reconnection is more of 3D-type in the early phase, as manifested in a strong-to-weak shear transition in flare loops, and becomes more 2D-like in the later phase, as shown by the apparent rising motion of an arcade of flare loops.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا