Do you want to publish a course? Click here

Forming Double-barred Galaxies From Dynamically Cool Inner Disks

399   0   0.0 ( 0 )
 Added by Juntai Shen
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

About one third of early-type barred galaxies host small-scale secondary bars. The formation and evolution of such double-barred galaxies remain far from being well understood. In order to understand the formation of such systems, we explore a large parameter space of isolated pure-disk simulations. We show that a dynamically cool inner disk embedded in a hotter outer disk can naturally generate a steady secondary bar while the outer disk forms a large-scale primary bar. The independent bar instabilities of inner and outer disks result in long-lived double-barred structures whose dynamical properties are comparable with observations. This formation scenario indicates that the secondary bar might form from the general bar instability, the same as the primary bar. Under some circumstances, the interaction of the bars and the disk leads to the two bars aligning or single, nuclear, bars only. Simulations that are cool enough of the center to experience clump instabilities may also generate steady double-barred galaxies. In this case, the secondary bars are fast, i.e., the bar length is close to the co-rotation radius. This is the first time that double-barred galaxies containing a fast secondary bar are reported. Previous orbit-based studies had suggested that fast secondary bars are not dynamically possible.



rate research

Read More

The intrinsic photometric properties of inner and outer stellar bars within 17 double-barred galaxies are thoroughly studied through a photometric analysis consisting of: i) two-dimensional multi-component photometric decompositions, and ii) three-dimensional statistical deprojections for measuring the thickening of bars, thus retrieving their 3D shape. The results are compared with previous measurements obtained with the widely used analysis of integrated light. Large-scale bars in single- and double-barred systems show similar sizes, and inner bars may be longer than outer bars in different galaxies. We find two distinct groups of inner bars attending to their in-plane length and ellipticity, resulting in a bimodal behaviour for the inner/outer bar length ratio. Such bimodality is related neither to the properties of the host galaxy nor the dominant bulge, and it does not show a counterpart in the dimension off the disc plane. The group of long inner bars lays at the lower end of the outer bar length vs. ellipticity correlation, whereas the short inner bars are out of that relation. We suggest that this behaviour could be due to either a different nature of the inner discs from which the inner bars are dynamically formed, or a different assembly stage for the inner bars. This last possibility would imply that the dynamical assembly of inner bars is a slow process taking several Gyr to happen. We have also explored whether all large-scale bars are prone to develop an inner bar at some stage of their lives, possibility we cannot fully confirm or discard.
Boxy, peanut- or X-shaped bulges are observed in a large fraction of barred galaxies viewed in, or close to, edge-on projection, as well as in the Milky Way. They are the product of dynamical instabilities occurring in stellar bars, which cause the latter to buckle and thicken vertically. Recent studies have found nearby galaxies that harbour two such features arising at different radial scales, in a nested configuration. In this paper we explore the formation of such double peanuts, using a collisionless N-body simulation of a pure disc evolving in isolation within a live dark matter halo, which we analyse in a completely analogous way to observations of real galaxies. In the simulation we find a stable double configuration consisting of two X/peanut structures associated to the same galactic bar - rotating with the same pattern speed - but with different morphology, formation time, and evolution. The inner, conventional peanut-shaped structure forms early via the buckling of the bar, and experiences little evolution once it stabilises. This feature is consistent in terms of size, strength and morphology, with peanut structures observed in nearby galaxies. The outer structure, however, displays a strong X, or bow-tie, morphology. It forms just after the inner peanut, and gradually extends in time (within 1 to 1.5 Gyr) to almost the end of the bar, a radial scale where ansae occur. We conclude that, although both structures form, and are dynamically coupled to, the same bar, they are supported by inherently different mechanisms.
75 - Olga K. Silchenko 2016
I analyze statistics of the stellar population properties for stellar nuclei and bulges of nearby lenticular galaxies in different environments by using panoramic spectral data of the integral-field spectrograph SAURON retrieved from the open archive of Isaac Newton Group. I estimate also the fraction of nearby lenticular galaxies having inner polar gaseous disks by exploring the volume-limited sample of early-type galaxies of the ATLAS-3D survey. By inspecting the two-dimensional velocity fields of the stellar and gaseous components with running tilted-ring technique, I have found 7 new cases of the inner polar disks. Together with those, the frequency of inner polar disks in nearby S0 galaxies reaches 10% that is much higher than the frequency of large-scale polar rings. Interestingly, the properties of the nuclear stellar populations in the inner polar ring hosts are statistically the same as those in the whole S0 sample implying similar histories of multiple gas accretion events from various directions.
Double bars are thought to be important features for secular evolution in the central regions of galaxies. However, observational evidence about their origin and evolution is still scarce. We report on the discovery of the first Box-Peanut (B/P) structure in an inner bar detected in the face-on galaxy NGC 1291. We use the integral field data obtained from the MUSE spectrograph within the TIMER project. The B/P structure is detected as bi-symmetric minima of the $h_4$ moment of the line-of-sight velocity distribution along the major axis of the inner bar, as expected from numerical simulations. Our observations demonstrate that inner bars can follow a similar evolutionary path as outer bars, undergoing buckling instabilities. They also suggest that inner bars are long-lived structures, thus imposing tight constraints to their possible formation mechanisms
The formation of two stellar bars within a galaxy has proved challenging for numerical studies. It is yet not clear whether the inner bar is born via a star formation process promoted by gas inflow along the outer bar, or whether it is dynamically assembled from instabilities in a small-scale stellar disc. Observational constraints to these scenarios are scarce. We present a thorough study of the stellar content of two double-barred galaxies observed by the MUSE TIMER project, NGC 1291 and NGC 5850, combined with a two-dimensional multi-component photometric decomposition performed on the 3.6{mu}m images from S4G. Our analysis confirms the presence of {sigma}-hollows appearing in the stellar velocity dispersion distribution at the ends of the inner bars. Both galaxies host inner discs matching in size with the inner bars, suggestive of a dynamical formation for the inner bars from small-scale discs. The analysis of the star formation histories for the structural components shaping the galaxies provides constraints on the epoch of dynamical assembly of the inner bars, which took place >6.5 Gyr ago for NGC 1291 and >4.5 Gyr ago for NGC 5850. This implies that inner bars are long-lived structures.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا