Do you want to publish a course? Click here

Recursion relations for multi-gluon off-shell amplitudes on the light-front and Wilson lines

154   0   0.0 ( 0 )
 Added by Piotr Kotko
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

We analyze the off-shell scattering amplitudes in the framework of the light-front perturbation theory. It is shown that the previously derived recursion relation between tree level off-shell amplitudes in this formalism actually resums whole classes of graphs into a Wilson line. More precisely, we establish a correspondence between the light-front methods for the computation of the off-shell amplitudes and the approach which makes use of the matrix elements of straight infinite Wilson lines, which are manifestly gauge invariant objects. Furthermore, since it is needed to explicitly verify the gauge invariance of light-front amplitudes, it is demonstrated that the Ward identities in this framework need additional instantaneous terms in the light-front graphs.



rate research

Read More

The fragmentation functions and scattering amplitudes are investigated in the framework of light-front perturbation theory. It is demonstrated that, the factorization property of the fragmentation functions implies the recursion relations for the off-shell scattering amplitudes which are light-front analogs of the Berends-Giele relations. These recursion relations on the light-front can be solved exactly by induction and it is shown that the expressions for the off-shell light-front amplitudes are represented as a linear combinations of the on-shell amplitudes. By putting external particles on-shell we recover the scattering amplitudes previously derived in the literature.
In this paper we consider tree-level gauge invariant off-shell amplitudes (Wilson line form factors) in $mathcal{N}=4$ SYM. For the off-shell amplitudes with one leg off-shell we present a conjecture for their Grassmannian integral representation in spinor helicity, twistor and momentum twistor parameterizations. The presented conjecture is successfully checked against BCFW results for MHV$_n$, NMHV$_4$ and NMHV$_5$ off-shell amplitudes. We have also verified that our Grassmannian integral representation correctly reproduces soft (on-shell) limit for the off-shell gluon momentum. It is shown that the (deformed) off-shell amplitude expressions could be also obtained using quantum inverse scattering method for auxiliary $gl(4|4)$ super spin chain.
We discuss the improvement of bilinear fermionic operators for Ginsparg-Wilson fermions. We present explicit formulae for improved Greens functions, which apply both on-shell and off-shell.
One of the methods to calculate tree-level multi-gluon scattering amplitudes is to use the Berends-Giele recursion relation involving off-shell currents or off-shell amplitudes, if working in the light cone gauge. As shown in recent works using the light-front perturbation theory, solutions to these recursions naturally collapse into gauge invariant and gauge-dependent components, at least for some helicity configurations. In this work, we show that such structure is helicity independent and emerges from analytic properties of matrix elements of Wilson line operators, where the slope of the straight gauge path is shifted in a certain complex direction. This is similar to the procedure leading to the Britto-Cachazo-Feng-Witten (BCFW) recursion, however we apply a complex shift to the Wilson line slope instead of the external momenta. While in the original BCFW procedure the boundary integrals over the complex shift vanish for certain deformations, here they are non-zero and are equal to the off-shell amplitudes. The main result can thus be summarized as follows: we derive a decomposition of a helicity-fixed off-shell current into gauge invariant component given by a matrix element of a straight Wilson line plus a reminder given by a sum of products of gauge invariant and gauge dependent quantities. We give several examples realizing this relation, including the five-point next-to-MHV helicity configuration.
There is growing evidence that on-shell gluon scattering amplitudes in planar N=4 SYM theory are equivalent to Wilson loops evaluated over contours consisting of straight, light-like segments defined by the momenta of the external gluons. This equivalence was first suggested at strong coupling using the AdS/CFT correspondence and has since been verified at weak coupling to one loop in perturbation theory. Here we perform an explicit two-loop calculation of the Wilson loop dual to the four-gluon scattering amplitude and demonstrate that the relation holds beyond one loop. We also propose an anomalous conformal Ward identity which uniquely fixes the form of the finite part (up to an additive constant) of the Wilson loop dual to four- and five-gluon amplitudes, in complete agreement with the BDS conjecture for the multi-gluon MHV amplitudes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا