No Arabic abstract
We present a new Subaru/HiCIAO high-contrast H-band polarized intensity (PI) image of a nearby transitional disk associated with TW Hydrae. The scattered light from the disk was detected from 0.2 to 1.5 (11 - 81 AU) and the PI image shows a clear axisymmetric depression in polarized intensity at ~ 0.4 (~ 20 AU) from the central star, similar to the ~ 80 AU gap previously reported from HST images. Azimuthal polarized intensity profile also shows the disk beyond 0.2 is almost axisymmetric. We discuss two possible scenarios explaining the origin of the polarized intensity depression: 1) a gap structure may exist at ~ 20 AU from the central star because of shallow slope seen in the polarized intensity profile, and 2) grain growth may be occurring in the inner region of the disk. Multi-band observations at NIR and millimeter/sub-millimeter wavelengths play a complementary role in investigating dust opacity and may help reveal the origin of the gap more precisely.
We present scattered light images of the TW Hya disk performed with SPHERE in PDI mode at 0.63, 0.79, 1.24 and 1.62 micron. We also present H2/H3-band ADI observations. Three distinct radial depressions in the polarized intensity distribution are seen, around 85, 21, and 6~au. The overall intensity distribution has a high degree of azimuthal symmetry; the disk is somewhat brighter than average towards the South and darker towards the North-West. The ADI observations yielded no signifiant detection of point sources in the disk. Our observations have a linear spatial resolution of 1 to 2au, similar to that of recent ALMA dust continuum observations. The sub-micron sized dust grains that dominate the light scattering in the disk surface are strongly coupled to the gas. We created a radiative transfer disk model with self-consistent temperature and vertical structure iteration and including grain size-dependent dust settling. This method may provide independent constraints on the gas distribution at higher spatial resolution than is feasible with ALMA gas line observations. We find that the gas surface density in the gaps is reduced by 50% to 80% relative to an unperturbed model. Should embedded planets be responsible for carving the gaps then their masses are at most a few 10 Mearth. The observed gaps are wider, with shallower flanks, than expected for planet-disk interaction with such low-mass planets. If forming planetary bodies have undergone collapse and are in the detachted phase then they may be directly observable with future facilities such as METIS at the E-ELT.
We report the discovery of a fifth candidate substellar system in the ~5-10 Myr TW Hydrae Association - DENIS J124514.1-442907. This object has a NIR spectrum remarkably similar to that of 2MASS J1139511-315921, a known TW Hydrae brown dwarf, with low surface gravity features such as a triangular-shaped H-band, deep H2O absorption, weak alkali lines, and weak hydride bands. We find an optical spectral type of M9.5 and estimate a mass of <24 M_Jup, assuming an age of ~5-10 Myr. While the measured proper motion for DENIS J124514.1-442907 is inconclusive as a test for membership, its position in the sky is coincident with the TW Hydrae Association. A more accurate proper motion measurement, higher resolution spectroscopy for radial velocity, and a parallax measurement are needed to derive the true space motion and to confirm its membership.
We report the discovery of five T Tauri star systems, two of which are resolved binaries, in the vicinity of the nearest known region of recent star formation, the TW Hydrae Association. The newly discovered systems display the same signatures of youth (namely high X-ray flux, large Li abundance and strong chromospheric activity) and the same proper motion as the original five members. These similarities firmly establish the group as a bona fide T Tauri association, unique in its proximity to Earth and its complete isolation from any known molecular clouds. At an age of ~10 Myr and a distance of ~50 pc, the association members are excellent candidates for future studies of circumstellar disk dissipation and the formation of brown dwarfs and planets. Indeed, as an example, our speckle imaging revealed a faint, very likely companion 2 north of CoD-33 7795 (TWA 5). Its color and brightness suggest a spectral type ~M8.5 which, at an age of ~10^7 years, implies a mass ~20 M(Jupiter).
We present long-baseline Atacama Large Millimeter/submillimeter Array (ALMA) observations of the 870 micron continuum emission from the nearest gas-rich protoplanetary disk, around TW Hya, that trace millimeter-sized particles down to spatial scales as small as 1 AU (20 mas). These data reveal a series of concentric ring-shaped substructures in the form of bright zones and narrow dark annuli (1-6 AU) with modest contrasts (5-30%). We associate these features with concentrations of solids that have had their inward radial drift slowed or stopped, presumably at local gas pressure maxima. No significant non-axisymmetric structures are detected. Some of the observed features occur near temperatures that may be associated with the condensation fronts of major volatile species, but the relatively small brightness contrasts may also be a consequence of magnetized disk evolution (the so-called zonal flows). Other features, particularly a narrow dark annulus located only 1 AU from the star, could indicate interactions between the disk and young planets. These data signal that ordered substructures on ~AU scales can be common, fundamental factors in disk evolution, and that high resolution microwave imaging can help characterize them during the epoch of planet formation.
We report the observation and physical characterization of the possible dwarf planet UZ (DeeDee), a dynamically detached trans-Neptunian object discovered at 92 AU. This object is currently the second-most distant known trans-Neptunian object with reported orbital elements, surpassed in distance only by the dwarf planet Eris. The object was discovered with an $r$-band magnitude of 23.0 in data collected by the Dark Energy Survey between 2014 and 2016. Its 1140-year orbit has $(a,e,i) = (109~mathrm{AU}, 0.65, 26.8^{circ})$. It will reach its perihelion distance of 38 AU in the year 2142. Integrations of its orbit show it to be dynamically stable on Gyr timescales, with only weak interactions with Neptune. We have performed followup observations with ALMA, using 3 hours of on-source integration time to measure the objects thermal emission in the Rayleigh-Jeans tail. The signal is detected at 7$sigma$ significance, from which we determine a $V$-band albedo of $13.1^{+3.3}_{-2.4}mathrm{(stat)}^{+2.0}_{-1.4}mathrm{(sys)}$ percent and a diameter of $635^{+57}_{-61}mathrm{(stat)}^{+32}_{-39}mathrm{(sys)}$~km, assuming a spherical body with uniform surface properties.