No Arabic abstract
We have used diffraction gratings to simplify the fabrication, and dramatically increase the atomic collection efficiency, of magneto-optical traps using micro-fabricated optics. The atom number enhancement was mainly due to the increased beam capture volume, afforded by the large area (4cm^2) shallow etch (200nm) binary grating chips. Here we provide a detailed theoretical and experimental investigation of the on-chip magneto-optical trap temperature and density in four different chip geometries using 87Rb, whilst studying effects due to MOT radiation pressure imbalance. With optimal initial MOTs on two of the chips we obtain both large atom number (2x10^7) _and_ sub-Doppler temperatures (50uK) after optical molasses.
We demonstrate a continuously loaded $^{88}mathrm{Sr}$ magneto-optical trap (MOT) with a steady-state phase-space density of $1.3(2) times 10^{-3}$. This is two orders of magnitude higher than reported in previous steady-state MOTs. Our approach is to flow atoms through a series of spatially separated laser cooling stages before capturing them in a MOT operated on the 7.4-kHz linewidth Sr intercombination line using a hybrid slower+MOT configuration. We also demonstrate producing a Bose-Einstein condensate at the MOT location, despite the presence of laser cooling light on resonance with the 30-MHz linewidth transition used to initially slow atoms in a separate chamber. Our steady-state high phase-space density MOT is an excellent starting point for a continuous atom laser and dead-time free atom interferometers or clocks.
We report an experimental study of peak and phase-space density of a two-stage magneto-optical trap (MOT) of 6-Li atoms, which exploits the narrower $2S_{1/2}rightarrow 3P_{3/2}$ ultra-violet (UV) transition at 323 nm following trapping and cooling on the more common D2 transition at 671 nm. The UV MOT is loaded from a red MOT and is compressed to give a high phase-space density up to $3times 10^{-4}$. Temperatures as low as 33 $mu$K are achieved on the UV transition. We study the density limiting factors and in particular find a value for the light-assisted collisional loss coefficient of $1.3 pm0.4times10^{-10},textrm{cm}^3/textrm{s}$ for low repumping intensity.
We show that micro-machined non-evaporable getter pumps (NEGs) can extend the time over which laser cooled atoms canbe produced in a magneto-optical trap (MOT), in the absence of other vacuum pumping mechanisms. In a first study, weincorporate a silicon-glass microfabricated ultra-high vacuum (UHV) cell with silicon etched NEG cavities and alumino-silicateglass (ASG) windows and demonstrate the observation of a repeatedly-loading MOT over a 10 minute period with a single laser-activated NEG. In a second study, the capacity of passive pumping with laser activated NEG materials is further investigated ina borosilicate glass-blown cuvette cell containing five NEG tablets. In this cell, the MOT remained visible for over 4 days withoutany external active pumping system. This MOT observation time exceeds the one obtained in the no-NEG scenario by almostfive orders of magnitude. The cell scalability and potential vacuum longevity made possible with NEG materials may enable inthe future the development of miniaturized cold-atom instruments.
We study several new magneto-optical trapping configurations in $^{87}$Rb. These unconventional MOTs all use type-II transitions, where the angular momentum of the ground state is greater than or equal to that of the excited state, and they may use either red-detuned or blue-detuned light. We describe the conditions under which each new MOT forms. The various MOTs exhibit an enormous range of lifetimes, temperatures and density distributions. At the detunings where they are maximized, the lifetimes of the various MOTs vary from 0.1 to 15 s. One MOT forms large ring-like structures with no density at the centre. The temperature in the red-detuned MOTs can be three orders of magnitude higher than in the blue-detuned MOTs. We present measurements of the capture velocity of a blue-detuned MOT, and we study how the loss rate due to ultracold collisions depends on laser intensity and detuning.
We report on the experimental realization of a robust and efficient magneto-optical trap for erbium atoms, based on a narrow cooling transition at 583nm. We observe up to $N=2 times 10^{8}$ atoms at a temperature of about $T=15 mu K$. This simple scheme provides better starting conditions for direct loading of dipole traps as compared to approaches based on the strong cooling transition alone, or on a combination of a strong and a narrow kHz transition. Our results on Er point to a general, simple and efficient approach to laser cool samples of other lanthanide atoms (Ho, Dy, and Tm) for the production of quantum-degenerate samples.