Do you want to publish a course? Click here

Distinctive momentum dependence of the band reconstruction in the nematic state of FeSe thin film

225   0   0.0 ( 0 )
 Added by Yan Zhang
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Nematic state, where the system is translationally invariant but breaks the rotational symmetry, has drawn great attentions recently due to experimental observations of such a state in both cuprates and iron-based superconductors. The mechanism of nematicity that is likely tied to the pairing mechanism of high-Tc, however, still remains controversial. Here, we studied the electronic structure of multilayer FeSe film by angle-resolved photoemission spectroscopy (ARPES). We found that the FeSe film enters the nematic state around 125 K, while the electronic signature of long range magnetic order has not been observed down to 20K indicating the non-magnetic origin of the nematicity. The band reconstruction in the nematic state is characterized by the splitting of the dxz and dyz bands. More intriguingly, such energy splitting is strong momentum dependent with the largest band splitting of ~80meV at the zone corner. The simple on-site ferro-orbital ordering is insufficient to reproduce the nontrivial momentum dependence of the band reconstruction. Instead, our results suggest that the nearest-neighbor hopping of dxz and dyz is highly anisotropic in the nematic state, the origin of which holds the key in understanding the nematicity in iron-based superconductors.



rate research

Read More

The origin of the electronic nematicity in FeSe, which occurs below a tetragonal-to-orthorhombic structural transition temperature $T_s$ ~ 90 K, well above the superconducting transition temperature $T_c = 9$ K, is one of the most important unresolved puzzles in the study of iron-based superconductors. In both spin- and orbital-nematic models, the intrinsic magnetic excitations at $mathbf{Q}_1=(1, 0)$ and $mathbf{Q}_2=(0, 1)$ of twin-free FeSe are expected to behave differently below $T_s$. Although anisotropic spin fluctuations below 10 meV between $mathbf{Q}_1$ and $mathbf{Q}_2$ have been unambiguously observed by inelastic neutron scattering around $T_c (<<T_s)$, it remains unclear whether such an anisotropy also persists at higher energies and associates with the nematic transition $T_s$. Here we use resonant inelastic x-ray scattering (RIXS) to probe the high-energy magnetic excitations of uniaxial-strain detwinned FeSe. A prominent anisotropy between the magnetic excitations along the $H$ and $K$ directions is found to persist to $sim200$ meV, which is even more pronounced than the anisotropy of spin waves in BaFe$_2$As$_2$. This anisotropy decreases gradually with increasing temperature and finally vanishes at a temperature around the nematic transition temperature $T_s$. Our results reveal an unprecedented strong spin-excitation anisotropy with a large energy scale well above the $d_{xz}/d_{yz}$ orbital splitting, suggesting that the nematic phase transition is primarily spin-driven. Moreover, the measured high-energy spin excitations are dispersive and underdamped, which can be understood from a local-moment perspective. Our findings provide the much-needed understanding of the mechanism for the nematicity of FeSe and point to a unified description of the correlation physics across seemingly distinct classes of Fe-based superconductors.
378 - Cong Li , Xianxin Wu , Le Wang 2019
The iron-based superconductor FeSe has attracted much recent attention because of its simple crystal structure, distinct electronic structure and rich physics exhibited by itself and its derivatives. Determination of its intrinsic electronic structure is crucial to understand its physical properties and superconductivity mechanism. Both theoretical and experimental studies so far have provided a picture that FeSe consists of one hole-like Fermi surface around the Brillouin zone center in its nematic state. Here we report direct observation of two hole-like Fermi surface sheets around the Brillouin zone center, and the splitting of the associated bands, in the nematic state of FeSe by taking high resolution laser-based angle-resolved photoemission measurements. These results indicate that, in addition to nematic order and spin-orbit coupling, there is an additional order in FeSe that breaks either inversion or time reversal symmetries. The new Fermi surface topology asks for reexamination of the existing theoretical and experimental understanding of FeSe and stimulates further efforts to identify the origin of the hidden order in its nematic state.
125 - Y. Zhang , J. J. Lee , R. G. Moore 2015
Fermi surface topology and pairing symmetry are two pivotal characteristics of a superconductor. Superconductivity in one monolayer (1ML) FeSe thin film has attracted great interest recently due to its intriguing interfacial properties and possibly high superconducting transition temperature (Tc) over 77 K. Here, we report high-resolution measurements of the Fermi surface and superconducting gaps in 1ML FeSe using angle-resolved photoemission spectroscopy (ARPES). Two ellipse-like electron pockets are clearly resolved overlapping with each other at the Brillouin zone corner. The superconducting gap is nodeless but moderately anisotropic, which put strong constraints on determining the pairing symmetry. The gap maxima locate along the major axis of ellipse, which cannot be explained by a single d-wave, extended s-wave, or s$pm$ gap function. Four gap minima are observed at the intersection of electron pockets suggesting the existence of either a sign change or orbital-dependent pairing in 1ML FeSe.
71 - C. Cai , T. T. Han , Z. G. Wang 2020
Unveiling the driving force for a phase transition is normally difficult when multiple degrees of freedom are strongly coupled. One example is the nematic phase transition in iron-based superconductors. Its mechanism remains controversial due to a complex intertwining among different degrees of freedom. In this paper, we report a method for measuring the nematic susceptibly of FeSe$_{0.9}$S$_{0.1}$ using angle-resolved photoemission spectroscopy (ARPES) and an $in$-$situ$ strain-tuning device. The nematic susceptibility is characterized as an energy shift of band induced by a tunable uniaxial strain. We found that the temperature-dependence of the nematic susceptibility is strongly momentum dependent. As the temperature approaches the nematic transition temperature from the high temperature side, the nematic susceptibility remains weak at the Brillouin zone center while showing divergent behavior at the Brillouin zone corner. Our results highlight the complexity of the nematic order parameter in the momentum space, which provides crucial clues to the driving mechanism of the nematic phase transition. Our experimental method which can directly probe the electronic susceptibly in the momentum space provides a new way to study the complex phase transitions in various materials.
We present a comprehensive study of the evolution of the nematic electronic structure of FeSe using high resolution angle-resolved photoemission spectroscopy (ARPES), quantum oscillations in the normal state and elastoresistance measurements. Our high resolution ARPES allows us to track the Fermi surface deformation from four-fold to two-fold symmetry across the structural transition at ~87 K which is stabilized as a result of the dramatic splitting of bands associated with dxz and dyz character. The low temperature Fermi surface is that a compensated metal consisting of one hole and two electron bands and is fully determined by combining the knowledge from ARPES and quantum oscillations. A manifestation of the nematic state is the significant increase in the nematic susceptibility as approaching the structural transition that we detect from our elastoresistance measurements on FeSe. The dramatic changes in electronic structure cannot be explained by the small lattice effects and, in the absence of magnetic fluctuations above the structural transition, points clearly towards an electronically driven transition in FeSe stabilized by orbital-charge ordering.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا