No Arabic abstract
We perform a 3D multi-probe analysis of the rich galaxy cluster A1689 by combining improved weak-lensing data from new BVRiz Subaru/Suprime-Cam observations with strong-lensing, X-ray, and Sunyaev-Zeldovich effect (SZE) data sets. We reconstruct the projected matter distribution from a joint weak-lensing analysis of 2D shear and azimuthally integrated magnification constraints, the combination of which allows us to break the mass-sheet degeneracy. The resulting mass distribution reveals elongation with axis ratio ~0.7 in projection. When assuming a spherical halo, our full weak-lensing analysis yields a projected concentration of $c_{200c}^{2D}=8.9pm 1.1$ ($c_{vir}^{2D}sim 11$), consistent with and improved from earlier weak-lensing work. We find excellent consistency between weak and strong lensing in the region of overlap. In a parametric triaxial framework, we constrain the intrinsic structure and geometry of the matter and gas distributions, by combining weak/strong lensing and X-ray/SZE data with minimal geometric assumptions. We show that the data favor a triaxial geometry with minor-major axis ratio 0.39+/-0.15 and major axis closely aligned with the line of sight (22+/-10 deg). We obtain $M_{200c}=(1.2pm 0.2)times 10^{15} M_{odot}/h$ and $c_{200c}=8.4pm 1.3$, which overlaps with the $>1sigma$ tail of the predicted distribution. The shape of the gas is rounder than the underlying matter but quite elongated with minor-major axis ratio 0.60+/-0.14. The gas mass fraction within 0.9Mpc is 10^{+3}_{-2}%. The thermal gas pressure contributes to ~60% of the equilibrium pressure, indicating a significant level of non-thermal pressure support. When compared to Plancks hydrostatic mass estimate, our lensing measurements yield a spherical mass ratio of $M_{Planck}/M_{GL}=0.70pm 0.15$ and $0.58pm 0.10$ with and without corrections for lensing projection effects, respectively.
Multi-wavelength techniques can probe the distribution and the physical properties of baryons and dark matter in galaxy clusters from the inner regions out to the peripheries. We present a full three-dimensional analysis combining strong and weak lensing, X-ray surface brightness and temperature, and the Sunyaev-Zeldovich effect. The method is applied to MACS J1206.2-0847, a remarkably regular, face-on, massive, M_{200}=(1.1+-0.2)*10^{15}M_Sun/h, cluster at z=0.44. The measured concentration, c_{200}=6.3+-1.2, and the triaxial shape are common to halos formed in a LCDM scenario. The gas has settled in and follows the shape of the gravitational potential, which is evidence of pressure equilibrium via the shape theorem. There is no evidence for significant non-thermal pressure and the equilibrium is hydrostatic.
A115 is a merging galaxy cluster at $zsim0.2$ with a number of remarkable features including a giant ($sim2.5$ Mpc) radio relic, two asymmetric X-ray peaks with trailing tails, and a peculiar line-of-sight velocity structure. We present a multi-wavelength study of A115 using optical imaging data from Subaru, X-ray data from $Chandra$, and spectroscopic data from the Keck/DEIMOS and MMT/Hectospec instruments. Our weak-lensing analysis shows that the cluster is comprised of two subclusters whose mass centroids are in excellent agreement with the two BCG positions ($lesssim10$). By modeling A115 with a superposition of two Navarro-Frenk-White halos, we determine the masses of the northern and southern subclusters to be $M_{200}=1.58_{-0.49}^{+0.56}times 10^{14} text{M}_{odot}$ and $3.15_{-0.71}^{+0.79}times 10^{14} text{M}_{odot}$, respectively. Combining the two halos, we estimate the total cluster mass to be $M_{200}=6.41_{-1.04}^{+1.08}times10^{14} text{M}_{odot}$ at $R_{200}=1.67_{-0.09}^{+0.10}$ Mpc. These weak-lensing masses are significantly (a factor of 3-10) lower than what is implied by the X-ray and optical spectroscopic data. We attribute the difference to the gravitational and hydrodynamic disruption caused by the collision between the two subclusters.
The X-ray telescope eROSITA onboard the newly launched SRG mission serendipitously observed the galaxy cluster A3408 ($z=0.0420$) during the PV observation of the AGN 1H0707-495. Despite its brightness and large extent, it has not been observed by any modern X-ray observatory. A neighbouring cluster in NW direction, A3407 ($z=0.0428$), appears to be close at least in projection ($sim 1.7$ Mpc). This cluster pair could be in a pre- or post-merger state. We perform a detailed X-ray analysis of A3408. We construct particle background subtracted and exposure corrected images and surface brightness profiles in different sectors. The spectral analysis is performed out to $1.4r_{500}$. Additionally, a temperature map is presented depicting the distribution of the ICM temperature. Furthermore, we make use of data from the RASS to estimate some bulk properties of A3408 and A3407, using the growth curve analysis method and scaling relations. The imaging analysis shows a complex morphology of A3408 with a strong elongation in SE-NW direction. This is quantified by comparing the surface brightness profiles of the NW, SW, SE and NE directions, where the NW and SE directions show a significantly higher surface brightness compared to the other directions. We determine a gas temperature ${rm k_B}T_{500}=(2.23pm0.09)$ keV. The T-profile reveals a hot core within $2$ of the emission peak, ${rm k_B}T=3.04^{+0.29}_{-0.25}$ keV. Employing a M-T relation, we obtain $M_{500}=(9.27pm0.75)times 10^{13}M_{odot}$ iteratively. The $r_{200}$ of A3407 and A3408 are found to overlap in projection which makes ongoing interactions plausible. The 2d T-map reveals higher temperatures in W than in E direction. A3407 and A3408 are likely in a pre-merger state, affecting the ICM properties, i.e., increased temperatures in the direction of A3407 indicate adiabatic compression or shocks due to the interaction.
We present a weak-lensing analysis of the merging {em Frontier Fields} (FF) cluster Abell~2744 using new Subaru/Suprime-Cam imaging. The wide-field lensing mass distribution reveals this cluster is comprised of four distinct substructures. Simultaneously modeling the two-dimensional reduced shear field using a combination of a Navarro--Frenk--White (NFW) model for the main core and truncated NFW models for the subhalos, we determine their masses and locations. The total mass of the system is constrained as $M_mathrm{200c} = (2.06pm0.42)times10^{15},M_odot$. The most massive clump is the southern component with $M_mathrm{200c} = (7.7pm3.4)times10^{14},M_odot$, followed by the western substructure ($M_mathrm{200c} = (4.5pm2.0)times10^{14},M_odot$) and two smaller substructures to the northeast ($M_mathrm{200c} = (2.8pm1.6)times10^{14},M_odot$) and northwest ($M_mathrm{200c} = (1.9pm1.2)times10^{14},M_odot$). The presence of the four substructures supports the picture of multiple mergers. Using a composite of hydrodynamical binary simulations we explain this complicated system without the need for a slingshot effect to produce the northwest X-ray interloper, as previously proposed. The locations of the substructures appear to be offset from both the gas ($87^{+34}_{-28}$ arcsec, 90% CL) and the galaxies ($72^{+34}_{-53}$ arcsec, 90% CL) in the case of the northwestern and western subhalos. To confirm or refute these findings, high resolution space-based observations extending beyond the current FF limited coverage to the west and northwestern area are essential.
The gravitationally-lensed galaxy A1689-zD1 is one of the most distant spectroscopically confirmed sources ($z=7.5$). It is the earliest known galaxy where the interstellar medium (ISM) has been detected; dust emission was detected with the Atacama Large Millimetre Array (ALMA). A1689-zD1 is also unusual among high-redshift dust emitters as it is a sub-L* galaxy and is therefore a good prospect for the detection of gaseous ISM in a more typical galaxy at this redshift. We observed A1689-zD1 with ALMA in bands 6 and 7 and with the Green Bank Telescope (GBT) in band $Q$. To study the structure of A1689-zD1, we map the mm thermal dust emission and find two spatial components with sizes about $0.4-1.7$,kpc (lensing-corrected). The rough spatial morphology is similar to what is observed in the near-infrared with {it HST} and points to a perturbed dynamical state, perhaps indicative of a major merger or a disc in early formation. The ALMA photometry is used to constrain the far-infrared spectral energy distribution, yielding a dust temperature ($T_{rm dust} sim 35$--$45$,K for $beta = 1.5-2$). We do not detect the CO(3-2) line in the GBT data with a 95% upper limit of 0.3,mJy observed. We find a slight excess emission in ALMA band~6 at 220.9,GHz. If this excess is real, it is likely due to emission from the [CII] 158.8,$mu$m line at $z_{rm [CII]} = 7.603$. The stringent upper limits on the [CII]/$L_{rm FIR}$ luminosity ratio suggest a [CII] deficit similar to several bright quasars and massive starbursts.