Do you want to publish a course? Click here

Super compact pairwise model for SIS epidemic on heterogeneous networks

107   0   0.0 ( 0 )
 Added by Istvan Kiss Z
 Publication date 2015
  fields Biology
and research's language is English




Ask ChatGPT about the research

In this paper we provide the derivation of a super compact pairwise model with only 4 equations in the context of describing susceptible-infected-susceptible (SIS) epidemic dynamics on heterogenous networks. The super compact model is based on a new closure relation that involves not only the average degree but also the second and third moments of the degree distribution. Its derivation uses an a priori approximation of the degree distribution of susceptible nodes in terms of the degree distribution of the network. The new closure gives excellent agreement with heterogeneous pairwise models that contain significantly more differential equations.



rate research

Read More

Age at infection is often an important factor in epidemic dynamics. In this paper a disease transmission model of SIS type with age dependent infection on a heterogeneous network is discussed. The model allows the infectious rate and the recovery rate to vary and depend on the age of the infected individual at the time of infection. We address the threshold property of the basic reproduction number and present the global dynamical properties of the disease-free and endemic equilibria in the model. Finally, some numerical simulations are carried out to illustrate the main results. The combined effects of the network structure and the age dependent factor on the disease dynamics are displayed.
We develop a generalized group-based epidemic model (GgroupEM) framework for any compartmental epidemic model (for example; susceptible-infected-susceptible, susceptible-infected-recovered, susceptible-exposed-infected-recovered). Here, a group consists of a collection of individual nodes. This model can be used to understand the important dynamic characteristics of a stochastic epidemic spreading over very large complex networks, being informative about the state of groups. Aggregating nodes by groups, the state space becomes smaller than the individual-based approach at the cost of aggregation error, which is strongly bounded by the isoperimetric inequality. We also develop a mean-field approximation of this framework to further reduce the state-space size. Finally, we extend the GgroupEM to multilayer networks. Since the group-based framework is computationally less expensive and faster than an individual-based framework, then this framework is useful when the simulation time is important.
80 - T. Yeo 2020
Here, we consider an SIS epidemic model where the individuals are distributed on several distinct patches. We construct a stochastic model and then prove that it converges to a deterministic model as the total population size tends to infinity. Furthermore, we show the existence and the global stability of a unique endemic equilibrium provided that the migration rates of susceptible and infectious individuals are equal. Finally, we compare the equilibra with those of the homogeneous model, and with those of isolated patches.
The dynamics of an SIS epidemic patch model with asymmetric connectivity matrix is analyzed. It is shown that the basic reproduction number $R_0$ is strictly decreasing with respect to the dispersal rate of the infected individuals, and the model has a unique endemic equilibrium if $R_0>1$. The asymptotic profiles of the endemic equilibrium for small dispersal rates are characterized. In particular, it is shown that the endemic equilibrium converges to a limiting disease-free equilibrium as the dispersal rate of susceptible individuals tends to zero, and the limiting disease-free equilibrium has a positive number of susceptible individuals on each low-risk patch. Moreover a sufficient and necessary condition is found to guarantee that the limiting disease-free equilibrium has no positive number of susceptible individuals on each high-risk patch. Our results extend earlier results for symmetric connectivity matrix, and we also partially solve an open problem by Allen et al. (SIAM J. Appl. Math., 67: 1283-1309, 2007).
In this paper, we analyze dynamic switching networks, wherein the networks switch arbitrarily among a set of topologies. For this class of dynamic networks, we derive an epidemic threshold, considering the SIS epidemic model. First, an epidemic probabilistic model is developed assuming independence between states of nodes. We identify the conditions under which the epidemic dies out by linearizing the underlying dynamical system and analyzing its asymptotic stability around the origin. The concept of joint spectral radius is then used to derive the epidemic threshold, which is later validated using several networks (Watts-Strogatz, Barabasi-Albert, MIT reality mining graphs, Regular, and Gilbert). A simplified version of the epidemic threshold is proposed for undirected networks. Moreover, in the case of static networks, the derived epidemic threshold is shown to match conventional analytical results. Then, analytical results for the epidemic threshold of dynamic networksare proved to be applicable to periodic networks. For dynamic regular networks, we demonstrate that the epidemic threshold is identical to the epidemic threshold for static regular networks. An upper bound for the epidemic spread probability in dynamic Gilbert networks is also derived and verified using simulation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا