Rank $n$ swapping algebra for $operatorname{PGL}_n$ Fock-Goncharov $mathcal{X}$ moduli space


Abstract in English

The {em rank $n$ swapping algebra} is a Poisson algebra defined on the set of ordered pairs of points of the circle using linking numbers, whose geometric model is given by a certain subspace of $(mathbb{K}^n times mathbb{K}^{n*})^r/operatorname{GL}(n,mathbb{K})$. For any ideal triangulation of $D_k$---a disk with $k$ points on its boundary, using determinants, we find an injective Poisson algebra homomorphism from the fraction algebra generated by the Fock--Goncharov coordinates for $mathcal{X}_{operatorname{PGL}_n,D_k}$ to the rank $n$ swapping multifraction algebra for $r=kcdot(n-1)$ with respect to the (Atiyah--Bott--)Goldman Poisson bracket and the swapping bracket. This is the building block of the general surface case. Two such injective Poisson algebra homomorphisms related to two ideal triangulations $mathcal{T}$ and $mathcal{T}$ are compatible with each other under the flips.

Download