Do you want to publish a course? Click here

Leveraging the network: a stress-test framework based on DebtRank

127   0   0.0 ( 0 )
 Added by Marco D'Errico
 Publication date 2015
  fields Financial
and research's language is English




Ask ChatGPT about the research

We develop a novel stress-test framework to monitor systemic risk in financial systems. The modular structure of the framework allows to accommodate for a variety of shock scenarios, methods to estimate interbank exposures and mechanisms of distress propagation. The main features are as follows. First, the framework allows to estimate and disentangle not only first-round effects (i.e. shock on external assets) and second-round effects (i.e. distress induced in the interbank network), but also third-round effects induced by possible fire sales. Second, it allows to monitor at the same time the impact of shocks on individual or groups of financial institutions as well as their vulnerability to shocks on counterparties or certain asset classes. Third, it includes estimates for loss distributions, thus combining network effects with familiar risk measures such as VaR and CVaR. Fourth, in order to perform robustness analyses and cope with incomplete data, the framework features a module for the generation of sets of networks of interbank exposures that are coherent with the total lending and borrowing of each bank. As an illustration, we carry out a stress-test exercise on a dataset of listed European banks over the years 2008-2013. We find that second-round and third-round effects dominate first-round effects, therefore suggesting that most current stress-test frameworks might lead to a severe underestimation of systemic risk.



rate research

Read More

The DebtRank algorithm has been increasingly investigated as a method to estimate the impact of shocks in financial networks, as it overcomes the limitations of the traditional default-cascade approaches. Here we formulate a dynamical microscopic theory of instability for financial networks by iterating balance sheet identities of individual banks and by assuming a simple rule for the transfer of shocks from borrowers to lenders. By doing so, we generalise the DebtRank formulation, both providing an interpretation of the effective dynamics in terms of basic accounting principles and preventing the underestimation of losses on certain network topologies. Depending on the structure of the interbank leverage matrix the dynamics is either stable, in which case the asymptotic state can be computed analytically, or unstable, meaning that at least one bank will default. We apply this framework to a dataset of the top listed European banks in the period 2008 - 2013. We find that network effects can generate an amplification of exogenous shocks of a factor ranging between three (in normal periods) and six (during the crisis) when we stress the system with a 0.5% shock on external (i.e. non-interbank) assets for all banks.
We consider a dynamical model of distress propagation on complex networks, which we apply to the study of financial contagion in networks of banks connected to each other by direct exposures. The model that we consider is an extension of the DebtRank algorithm, recently introduced in the literature. The mechanics of distress propagation is very simple: When a bank suffers a loss, distress propagates to its creditors, who in turn suffer losses, and so on. The original DebtRank assumes that losses are propagated linearly between connected banks. Here we relax this assumption and introduce a one-parameter family of non-linear propagation functions. As a case study, we apply this algorithm to a data-set of 183 European banks, and we study how the stability of the system depends on the non-linearity parameter under different stress-test scenarios. We find that the system is characterized by a transition between a regime where small shocks can be amplified and a regime where shocks do not propagate, and that the overall stability of the system increases between 2008 and 2013.
We define a financial bubble as a period of unsustainable growth, when the price of an asset increases ever more quickly, in a series of accelerating phases of corrections and rebounds. More technically, during a bubble phase, the price follows a faster-than-exponential power law growth process, often accompanied by log-periodic oscillations. This dynamic ends abruptly in a change of regime that may be a crash or a substantial correction. Because they leave such specific traces, bubbles may be recognised in advance, that is, before they burst. In this paper, we will explain the mechanism behind financial bubbles in an intuitive way. We will show how the log-periodic power law emerges spontaneously from the complex system that financial markets are, as a consequence of feedback mechanisms, hierarchical structure and specific trading dynamics and investment styles. We argue that the risk of a major correction, or even a crash, becomes substantial when a bubble develops towards maturity, and that it is therefore very important to find evidence of bubbles and to follow their development from as early a stage as possible. The tools that are explained in this paper actually serve that purpose. They are at the core of the Financial Crisis Observatory at the ETH Zurich, where tens of thousands of assets are monitored on a daily basis. This allow us to have a continuous overview of emerging bubbles in the global financial markets. The companion report available as part of the Notenstein white paper series (2014) with the title ``Financial bubbles: mechanism, diagnostic and state of the World (Feb. 2014) presents a practical application of the methodology outlines in this article and describes our view of the status concerning positive and negative bubbles in the financial markets, as of the end of January 2014.
In this paper, we formulate a method for minimising the expectation value of the procurement cost of electricity in two popular spot markets: {it day-ahead} and {it intra-day}, under the assumption that expectation value of unit prices and the distributions of prediction errors for the electricity demand traded in two markets are known. The expectation value of the total electricity cost is minimised over two parameters that change the amounts of electricity. Two parameters depend only on the expected unit prices of electricity and the distributions of prediction errors for the electricity demand traded in two markets. That is, even if we do not know the predictions for the electricity demand, we can determine the values of two parameters that minimise the expectation value of the procurement cost of electricity in two popular spot markets. We demonstrate numerically that the estimate of two parameters often results in a small variance of the total electricity cost, and illustrate the usefulness of the proposed procurement method through the analysis of actual data.
We investigate the trading behavior of Finnish individual investors trading the stocks selected to compute the OMXH25 index in 2003 by tracking the individual daily investment decisions. We verify that the set of investors is a highly heterogeneous system under many aspects. We introduce a correlation based method that is able to detect a hierarchical structure of the trading profiles of heterogeneous individual investors. We verify that the detected hierarchical structure is highly overlapping with the cluster structure obtained with the approach of statistically validated networks when an appropriate threshold of the hierarchical trees is used. We also show that the combination of the correlation based method and of the statistically validated method provides a way to expand the information about the clusters of investors with similar trading profiles in a robust and reliable way.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا