Do you want to publish a course? Click here

Searches for Time Dependent Neutrino Sources with IceCube Data from 2008 to 2012

183   0   0.0 ( 0 )
 Added by Asen Christov
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper searches for flaring astrophysical neutrino sources and sources with periodic emission with the IceCube neutrino telescope are presented. In contrast to time integrated searches, where steady emission is assumed, the analyses presented here look for a time dependent signal of neutrinos using the information from the neutrino arrival times to enhance the discovery potential. A search was performed for correlations between neutrino arrival times and directions as well as neutrino emission following time dependent lightcurves, sporadic emission or periodicities of candidate sources. These include active galactic nuclei, soft $gamma$-ray repeaters, supernova remnants hosting pulsars, micro-quasars and X-ray binaries. The work presented here updates and extends previously published results to a longer period that covers four years of data from 2008 April 5 to 2012 May 16 including the first year of operation of the completed 86-string detector. The analyses did not find any significant time dependent point sources of neutrinos and the results were used to set upper limits on the neutrino flux from source candidates.



rate research

Read More

High-energy neutrinos are unique messengers of the high-energy universe, tracing the processes of cosmic-ray acceleration. This paper presents analyses focusing on time-dependent neutrino point-source searches. A scan of the whole sky, making no prior assumption about source candidates, is performed, looking for a space and time clustering of high-energy neutrinos in data collected by the IceCube Neutrino Observatory between 2012 and 2017. No statistically significant evidence for a time-dependent neutrino signal is found with this search during this period since all results are consistent with the background expectation. Within this study period, the blazar 3C 279, showed strong variability, inducing a very prominent gamma-ray flare observed in 2015 June. This event motivated a dedicated study of the blazar, which consists of searching for a time-dependent neutrino signal correlated with the gamma-ray emission. No evidence for a time-dependent signal is found. Hence, an upper limit on the neutrino fluence is derived, allowing us to constrain a hadronic emission model.
IceCube has performed several all-sky searches for point-like neutrino sources using track-like events, including a recent time-integrated analysis using 10 years of IceCube data. This paper accompanies the public data release of these neutrino candidates detected by IceCube between April 6, 2008 and July 8, 2018. The selection includes through-going tracks, primarily due to muon neutrino candidates, that reach the detector from all directions, as well as neutrino track events that start within the instrumented volume. An updated selection and reconstruction for data taken after April 2012 slightly improves the sensitivity of the sample. While more than 80% of the sample overlaps between the old and n
Recently, IceCube found evidence for a diffuse signal of astrophysical neutrinos in an energy range of $60,mathrm{TeV}$ to the $mathrm{PeV}$-scale. The origin of those events, being a key to understanding the origin of cosmic rays, is still an unsolved question. So far, analyses have not succeeded to resolve the diffuse signal into point-like sources. Searches including a maximum-likelihood-ratio test, based on the reconstructed directions and energies of the detected down- and up-going neutrino candidates, were also performed on IceCube data leading to the exclusion of bright point sources. In this paper, we present two methods to search for faint neutrino point sources in three years of IceCube data, taken between 2008 and 2011. The first method is an autocorrelation test, applied separately to the northern and southern sky. The second method is a multipole analysis, which expands the measured data in the northern hemisphere into spherical harmonics and uses the resulting expansion coefficients to separate signal from background. With both methods, the results are consistent with the background expectation with a slightly more sparse spatial distribution, corresponding to an underfluctuation. Depending on the assumed number of sources, the resulting upper limit on the flux per source in the northern hemisphere for an $E^{-2}$ energy spectrum ranges from $1.5 cdot 10^{-8},mathrm{GeV}/(mathrm{cm}^2 mathrm{s})$, in the case of one assumed source, to $4 cdot 10^{-10} ,mathrm{GeV}/(mathrm{cm}^2 mathrm{s})$, in the case of $3500$ assumed sources.
This paper presents the results from point-like neutrino source searches using ten years of IceCube data collected between Apr.~6, 2008 and Jul.~10, 2018. We evaluate the significance of an astrophysical signal from a point-like source looking for an excess of clustered neutrino events with energies typically above $sim1,$TeV among the background of atmospheric muons and neutrinos. We perform a full-sky scan, a search within a selected source catalog, a catalog population study, and three stacked Galactic catalog searches. The most significant point in the Northern hemisphere from scanning the sky is coincident with the Seyfert II galaxy NGC 1068, which was included in the source catalog search. The excess at the coordinates of NGC 1068 is inconsistent with background expectations at the level of $2.9,sigma$ after accounting for statistical trials. The combination of this result along with excesses observed at the coordinates of three other sources, including TXS 0506+056, suggests that, collectively, correlations with sources in the Northern catalog are inconsistent with background at 3.3$,sigma$ significance. These results, all based on searches for a cumulative neutrino signal integrated over the ten years of available data, motivate further study of these and similar sources, including time-dependent analyses, multimessenger correlations, and the possibility of stronger evidence with coming upgrades to the detector.
We present results on searches for point-like sources of neutrinos using four years of IceCube data, including the first year of data from the completed 86-string detector. The total livetime of the combined dataset is 1,373 days. For an E$^{-2}$ spectrum the median sensitivity at 90% C.L. is $sim 10^{-12}$ TeV$^{-1}$cm$^{-2}$s$^{-1}$ for energies between 1 TeV$-$1 PeV in the northern sky and $sim 10^{-11}$ TeV$^{-1}$cm$^{-2}$s$^{-1}$ for energies between 100 TeV $-$ 100 PeV in the southern sky. The sensitivity has improved from both the additional year of data and the introduction of improved reconstructions compared to previous publications. In addition, we present the first results from an all-sky search for extended sources of neutrinos. We update results of searches for neutrino emission from stacked catalogs of sources, and test five new catalogs; two of Galactic supernova remnants and three of active galactic nuclei. In all cases, the data are compatible with the background-only hypothesis, and upper limits on the flux of muon neutrinos are reported for the sources considered.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا