No Arabic abstract
We give a rigorous proof of the fact that a phase transition discovered by Douglas and Kazakov in 1993 in the context of two-dimensional gauge theories occurs. This phase transition can be formulated in terms of the Brownian bridge on the unitary group U(N) when N tends to infinity. We explain how it can be understood by considering the asymptotic behaviour of the eigenvalues of the unitary Brownian bridge, and how it can be technically approached by means of Fourier analysis on the unitary group. Moreover, we advertise some more or less classical methods for solving certain minimisation problems which play a fundamental role in the study of the phase transition.
We study the competition interface between two growing clusters in a growth model associated to last-passage percolation. When the initial unoccupied set is approximately a cone, we show that this interface has an asymptotic direction with probability 1. The behavior of this direction depends on the angle $theta$ of the cone: for $thetageq180^{circ}$, the direction is deterministic, while for $theta<180^{circ}$, it is random, and its distribution can be given explicitly in certain cases. We also obtain partial results on the fluctuations of the interface around its asymptotic direction. The evolution of the competition interface in the growth model can be mapped onto the path of a second-class particle in the totally asymmetric simple exclusion process; from the existence of the limiting direction for the interface, we obtain a new and rather natural proof of the strong law of large numbers (with perhaps a random limit) for the position of the second-class particle at large times.
Let a<b, Omega=[a,b]^{Z^d} and H be the (formal) Hamiltonian defined on Omega by H(eta) = frac12 sum_{x,yinZ^d} J(x-y) (eta(x)-eta(y))^2 where J:Z^dtoR is any summable non-negative symmetric function (J(x)ge 0 for all xinZ^d, sum_x J(x)<infty and J(x)=J(-x)). We prove that there is a unique Gibbs measure on Omega associated to H. The result is a consequence of the fact that the corresponding Gibbs sampler is attractive and has a unique invariant measure.
* ACTIVATED RANDOM WALK MODEL * This is a conservative particle system on the lattice, with a Markovian continuous-time evolution. Active particles perform random walks without interaction, and they may as well change their state to passive, then stopping to jump. When particles of both types occupy the same site, they all become active. This model exhibits phase transition in the sense that for low initial densities the system locally fixates and for high densities it keeps active. Though extensively studied in the physics literature, the matter of giving a mathematical proof of such phase transition remained as an open problem for several years. In this work we identify some variables that are sufficient to characterize fixation and at the same time are stochastically monotone in the models parameters. We employ an explicit graphical representation in order to obtain the monotonicity. With this method we prove that there is a unique phase transition for the one-dimensional finite-range random walk. Joint with V. Sidoravicius. * BROKEN LINE PROCESS * We introduce the broken line process and derive some of its properties. Its discrete version is presented first and a natural generalization to the continuum is then proposed and studied. The broken lines are related to the Young diagram and the Hammersley process and are useful for computing last passage percolation values and finding maximal oriented paths. For a class of passage time distributions there is a family of boundary conditions that make the process stationary and reversible. One application is a simple proof of the explicit law of large numbers for last passage percolation with exponential and geometric distributions. Joint with V. Sidoravicius, D. Surgailis, and M. E. Vares.
We consider the Activated Random Walk model on $mathbb{Z}$. In this model, each particle performs a continuous-time simple symmetric random walk, and falls asleep at rate $lambda$. A sleeping particle does not move but it is reactivated in the presence of another particle. We show that for any sleep rate $lambda < infty$ if the density $ zeta $ is close enough to $1$ then the system stays active.
We study mixing times for the totally asymmetric simple exclusion process (TASEP) on a segment of size $N$ with open boundaries. We focus on the maximal current phase, and prove that the mixing time is of order $N^{3/2}$, up to logarithmic corrections. In the triple point, where the TASEP with open boundaries approaches the Uniform distribution on the state space, we show that the mixing time is precisely of order $N^{3/2}$. This is conjectured to be the correct order of the mixing time for a wide range of particle systems with maximal current. Our arguments rely on a connection to last-passage percolation, and recent results on moderate deviations of last-passage times.