Do you want to publish a course? Click here

The Higgs Transverse Momentum Distribution at NNLL and its Theoretical Errors

150   0   0.0 ( 0 )
 Added by Varun Vaidya
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

In this letter, we present the NNLL-NNLO transverse momentum Higgs distribution arising from gluon fusion. In the regime $p_perpll m_H$ we include the resummation of the large logs at next to next-to leading order and then match on to the $alpha_s^2$ fixed order result near $p_perp sim m_h$. By utilizing the rapidity renormalization group (RRG) we are able to smoothly match between the resummed, small $p_perp$ regime and the fixed order regime. We give a detailed discussion of the scale dependence of the result including an analysis of the rapidity scale dependence. Our central value differs from previous results, in the transition region as well as the tail, by an amount which is outside the error band. This difference is due to the fact that the RRG profile allows us to smoothly turn off the resummation.



rate research

Read More

We derive analytical results for unintegrated color dipole gluon distribution function at small transverse momentum. By Fourier transforming the $S$-matrix for large dipoles we derive the results in the form of a series of Bells polynomials. Interestingly, when resumming the series in leading log accuracy, the results showing up striking similarity with the Sudakov form factor with role play of coupling is being done by a constant that stems from the saddle point condition along the saturation line.
We discuss the evolution of the eight leading twist transverse momentum dependent parton distribution functions, which turns out to be universal and spin independent. By using the highest order perturbatively calculable ingredients at our disposal, we perform the resummation of the large logarithms that appear in the evolution kernel of transverse momentum distributions up to next-to-next-to-leading logarithms (NNLL), thus obtaining an expression for the kernel with highly reduced model dependence. Our results can also be obtained using the standard CSS approach when a particular choice of the $b^*$ prescription is used. In this sense, and while restricted to the perturbative domain of applicability, we consider our results as a prediction of the correct value of $b_{rm max}$ which is very close to $1.5 {rm GeV}^{-1}$. We explore under which kinematical conditions the effects of the non-perturbative region are negligible, and hence the evolution of transverse momentum distributions can be applied in a model independent way. The application of the kernel is illustrated by considering the unpolarized transverse momentum dependent parton distribution function and the Sivers function.
We compute O(g) NLO corrections to the transverse scattering kernel and transverse momentum broadening coefficient $hat{q}$ of weakly-coupled $mathcal{N}=4$ SYM. Based on this, we also compute NLO correction to the collinear splitting rates. For $hat{q}$ we find that the NLO/LO ratio is similar to the QCD one, with large NLO corrections. This is contrasted by our findings for the collinear splitting rate, which show a much better convergence in SYM than in QCD, providing further support to earlier expectations that NLO corrections have signs and relative magnitudes controlled by the specifics of the theory. We also compare the ratio of $hat{q}$ in QCD and in $mathcal{N}=4$ theory to strong coupling expectations.
The interplay between the small x limit of QCD amplitudes and QCD factorization at moderate x has been studied extensively in recent years. It was finally shown that semiclassical formulations of small x physics can have the form of an infinite twist framework involving Transverse Momentum Dependent (TMD) distributions in the eikonal limit. In this work, we demonstrate that small x distributions can be formulated in terms of transverse gauge links. This allows in particular for direct and efficient decompositions of observables into subamplitudes involving gauge invariant sub-operators which span parton distributions.
We derive the second-order QCD corrections to the production of a Higgs boson recoiling against a parton with finite transverse momentum, working in the effective field theory in which the top quark contributions are integrated out. To account for quark mass effects, we supplement the effective field theory result by the full quark mass dependence at leading order. Our calculation is fully differential in the final state kinematics and includes the decay of the Higgs boson to a photon pair. It allows one to make next-to-next-to- leading order (NNLO)-accurate theory predictions for Higgs-plus-jet final states and for the transverse momentum distribution of the Higgs boson, accounting for the experimental definition of the fiducial cross sections. The NNLO QCD corrections are found to be moderate and positive, they lead to a substantial reduction of the theory uncertainty on the predictions. We compare our results to 8 TeV LHC data from ATLAS and CMS. While the shape of the data is well-described for both experiments, we agree on the normalization only for CMS. By normalizing data and theory to the inclusive fiducial cross section for Higgs production, good agreement is found for both experiments, however at the expense of an increased theory uncertainty. We make predictions for Higgs production observables at the 13 TeV LHC, which are in good agreement with recent ATLAS data. At this energy, the leading order mass corrections to the effective field theory prediction become significant at large transverse momenta, and we discuss the resulting uncertainties on the predictions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا