Higher-Dimensional Supertranslations and Weinbergs Soft Graviton Theorem


Abstract in English

Asymptotic symmetries of theories with gravity in d=2m+2 spacetime dimensions are reconsidered for m>1 in light of recent results concerning d=4 BMS symmetries. Weinbergs soft graviton theorem in 2m+2 dimensions is re-expressed as a Ward identity for the gravitational S-matrix. The corresponding asymptotic symmetries are identified with 2m+2-dimensional supertranslations. An alternate derivation of these asymptotic symmetries as diffeomorphisms which preserve finite-energy boundary conditions at null infinity and act non-trivially on physical data is given. Our results differ from those of previous analyses whose stronger boundary conditions precluded supertranslations for d>4. We find for all even d that supertranslation symmetry is spontaneously broken in the conventional vacuum and identify soft gravitons as the corresponding Goldstone bosons.

Download