Asymptotic symmetries of theories with gravity in d=2m+2 spacetime dimensions are reconsidered for m>1 in light of recent results concerning d=4 BMS symmetries. Weinbergs soft graviton theorem in 2m+2 dimensions is re-expressed as a Ward identity for the gravitational S-matrix. The corresponding asymptotic symmetries are identified with 2m+2-dimensional supertranslations. An alternate derivation of these asymptotic symmetries as diffeomorphisms which preserve finite-energy boundary conditions at null infinity and act non-trivially on physical data is given. Our results differ from those of previous analyses whose stronger boundary conditions precluded supertranslations for d>4. We find for all even d that supertranslation symmetry is spontaneously broken in the conventional vacuum and identify soft gravitons as the corresponding Goldstone bosons.
Recently it was conjectured that a certain infinite-dimensional diagonal subgroup of BMS supertranslations acting on past and future null infinity (${mathscr I}^-$ and ${mathscr I}^+$) is an exact symmetry of the quantum gravity ${cal S}$-matrix, and an associated Ward identity was derived. In this paper we show that this supertranslation Ward identity is precisely equivalent to Weinbergs soft graviton theorem. Along the way we construct the canonical generators of supertranslations at ${mathscr I}^pm$, including the relevant soft graviton contributions. Boundary conditions at the past and future of ${mathscr I}^pm$ and a correspondingly modified Dirac bracket are required. The soft gravitons enter as boundary modes and are manifestly the Goldstone bosons of spontaneously broken supertranslation invariance.
We show that Weinbergs leading soft photon theorem in massless abelian gauge theories implies the existence of an infinite-dimensional large gauge symmetry which acts non-trivially on the null boundaries ${mathscr I}^pm$ of $(d+2)$-dimensional Minkowski spacetime. These symmetries are parameterized by an arbitrary function $varepsilon(x)$ of the $d$-dimensional celestial sphere living at ${mathscr I}^pm$. This extends the previously established equivalence between Weinbergs leading soft theorem and asymptotic symmetries from four and higher even dimensions to emph{all} higher dimensions.
Recently, new soft graviton theorem proposed by Cachazo and Strominger has inspired a lot of works. In this note, we use the KLT-formula to investigate the theorem. We have shown how the soft behavior of color ordered Yang-Mills amplitudes can be combined with KLT relation to give the soft behavior of gravity amplitudes. As a byproduct, we find two nontrivial identities of the KLT momentum kernel must hold.
Local gravitational theories with more than four derivatives have remarkable quantum properties, e.g., they are super-renormalizable and may be unitary in the Lee-Wick sense. Therefore, it is important to explore also the IR limit of these theories and identify observable signatures of the higher derivatives. In the present work we study the scattering of a photon by a classical external gravitational field in the sixth-derivative model whose propagator contains only real, simple poles. Also, we discuss the possibility of a gravitational seesaw-like mechanism, which could allow the make up of a relatively small physical mass from the huge massive parameters of the action. If possible, this mechanism would be a way out of the Planck suppression, affecting the gravitational deflection of low energy photons. It turns out that the mechanism which actually occurs works only to shift heavier masses to the further UV region. This fact may be favourable for protecting the theory from instabilities, but makes experimental detection of higher derivatives more difficult.
We consider the possibility of creating a graviton laser. The lasing medium would be a system of contained, ultra cold neutrons. Ultra cold neutrons are a quantum mechanical system that interacts with gravitational fields and with the phonons of the container walls. It is possible to create a population inversion by pumping the system using the phonons. We compute the rate of spontaneous emission of gravitons and the rate of the subsequent stimulated emission of gravitons. The gain obtainable is directly proportional to the density of the lasing medium and the fraction of the population inversion. The applications of a graviton laser would be interesting.