Do you want to publish a course? Click here

Non-linear propagation of kink waves to the solar chromosphere

185   0   0.0 ( 0 )
 Added by Marco Stangalini
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Small-scale magnetic field concentrations (magnetic elements) in the quiet Sun are believed to contribute to the energy budget of the upper layers of the Suns atmosphere, as they are observed to support a large number of MHD modes. In recent years, kink waves in magnetic elements were observed at different heights in the solar atmosphere, from the photosphere to the corona. However, the propagation of these waves has not been fully evaluated. Our aim is to investigate the propagation of kink waves in small magnetic elements in the solar atmosphere. We analysed spectropolarimetric data of high-quality and long duration of a photospheric quiet Sun region observed near the disk center with the spectropolarimeter CRISP at the Swedish Solar Telescope (SST), and complemented by simultaneous and co-spatial broad-band chromospheric observations of the same region. Our findings reveal a clear upward propagation of kink waves with frequency above $~2.6$ mHz. Moreover, the signature of a non-linear propagation process is also observed. By comparing photospheric to chromospheric power spectra, no signature of an energy dissipation is found at least at the atmospheric heights at which the data analysed originate. This implies that most of the energy carried by the kink waves (within the frequency range under study $< 17$ mHz) flows to upper layers in the Suns atmosphere.



rate research

Read More

How do magnetohydrodynamic waves travel from the fully ionized corona, into and through the underlying partially ionized chromosphere, and what are the consequences for solar flares? To address these questions, we have developed a 2-fluid model (of plasma and neutrals) and used it to perform 1D simulations of Alfven waves in a solar atmosphere with realistic density and temperature structure. Studies of a range of solar features (faculae, plage, penumbra and umbra) show that energy transmission from corona to chromosphere can exceed 20% of incident energy for wave periods of one second or less. Damping of waves in the chromosphere depends strongly on wave frequency: waves with periods 10 seconds or longer pass through the chromosphere with relatively little damping, however, for periods of 1 second or less, a substantial fraction (37%-100%) of wave energy entering the chromosphere is damped by ion-neutral friction in the mid and upper chromosphere, with electron resistivity playing some role in the lower chromosphere and in umbras. We therefore conclude that Alfvenic waves with periods of a few seconds or less are capable of heating the chromosphere during solar flares, and speculate that they could also contribute to electron acceleration or exciting sunquakes.
167 - C. Nutto , O. Steiner , M. Roth 2010
We present two-dimensional simulations of wave propagation in a realistic, non-stationary model of the solar atmosphere. This model shows a granular velocity field and magnetic flux concentrations in the intergranular lanes similar to observed velocity and magnetic structures on the Sun and takes radiative transfer into account. We present three cases of magneto-acoustic wave propagation through the model atmosphere, where we focus on the interaction of different magneto-acoustic wave at the layer of similar sound and Alfven speeds, which we call the equipartition layer. At this layer the acoustic and magnetic mode can exchange energy depending on the angle between the wave vector and the magnetic field vector. Our results show that above the equipartition layer and in all three cases the fast magnetic mode is refracted back into the solar atmosphere. Thus, the magnetic wave shows an evanescent behavior in the chromosphere. The acoustic mode, which travels along the magnetic field in the low plasma-$beta$ regime, can be a direct consequence of an acoustic source within or outside the low-$beta$ regime, or it can result from conversion of the magnetic mode, possibly from several such
Waves and shocks traveling through the solar chromospheric plasma are influenced by its partial ionization and weak collisional coupling, and may become susceptible to multi-fluid effects, similar to interstellar shock waves. In this study, we consider fast magneto-acoustic shock wave formation and propagation in a stratified medium, that is permeated by a horizontal magnetic field, with properties similar to that of the solar chromosphere. The evolution of plasma and neutrals is modeled using a two-fluid code that evolves a set of coupled equations for two separate fluids. We observed that waves in neutrals and plasma, initially coupled at the upper photosphere, become uncoupled at higher heights in the chromosphere. This decoupling can be a consequence of either the characteristic spatial scale at the shock front, that becomes similar to the collisional scale, or the change in the relation between the wave frequency, ion cyclotron frequency, and the collisional frequency with height. The decoupling height is a sensitive function of the wave frequency, wave amplitude, and the magnetic field strength. We observed that decoupling causes damping of waves and an increase in the background temperature due to the frictional heating. The comparison between analytical and numerical results allows us to separate the role of the nonlinear effects from the linear ones on the decoupling and damping of waves.
The chromosphere is a partially ionized layer of the solar atmosphere, the transition between the photosphere where the gas motion is determined by the gas pressure and the corona dominated by the magnetic field. We study the effect of partial ionization for 2D wave propagation in a gravitationally stratified, magnetized atmosphere with properties similar to the solar chromosphere. We adopt an oblique uniform magnetic field in the plane of propagation with strength suitable for a quiet sun region. The theoretical model used is a single fluid magnetohydrodynamic approximation, where ion-neutral interaction is modeled by the ambipolar diffusion term. Magnetic energy can be converted into internal energy through the dissipation of the electric current produced by the drift between ions and neutrals. We use numerical simulations where we continuously drive fast waves at the bottom of the atmosphere. The collisional coupling between ions and neutrals decreases with the decrease of the density and the ambipolar effect becomes important. Fast waves excited at the base of the atmosphere reach the equipartition layer and reflect or transmit as slow waves. While the waves propagate through the atmosphere and the density drops, the waves steepen into shocks. The main effect of ambipolar diffusion is damping of the waves. We find that for the parameters chosen in this work, the ambipolar diffusion affects the fast wave before it is reflected, with damping being more pronounced for waves which are launched in a direction perpendicular to the magnetic field. Slow waves are less affected by ambipolar effects. The damping increases for shorter periods and larger magnetic field strengths. Small scales produced by the nonlinear effects and the superposition of different types of waves created at the equipartition height are efficiently damped by ambipolar diffusion.
In this paper, we show a proof of concept of the heating mechanism of the solar chromosphere due to wave dissipation caused by the effects of partial ionization. Numerical modeling of non-linear wave propagation in a magnetic flux tube, embedded in the solar atmosphere, is performed by solving a system of single-fluid quasi-MHD equations, which take into account the ambipolar term from the generalized Ohms law. It is shown that perturbations caused by magnetic waves can be effectively dissipated due to ambipolar diffusion. The energy input by this mechanism is continuous and shown to be more efficient than dissipation of static currents, ultimately leading to chromospheric temperature increase in magnetic structures.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا