We consider the X-ray properties of the redback class of eclipsing millisecond pulsars. These are transitional systems between accreting low-mass X-ray binaries and binary millisecond pulsars orbiting white dwarfs, and hence their companions are non-degenerate and nearly Roche-lobe filling. The X-ray luminosity seems to scale with the fraction of the pulsar sky subtended by the companion, suggesting the shock region is not much larger than the companion, which is supported by modeling of the orbital light curves. The typical X-ray photon spectral index is $sim 1$ and the typical 0.3-8 keV X-ray efficiency, assuming a shock size on the order of the companions Roche lobe cross-section, is on the order of 10%. We present an overview of previous investigations, and present new observations of two redbacks, a Chandra observation of PSR J1628$-$3205 and a XMM-Newton observation of PSR J2129$-$0429. The latter shows a clearly double peaked orbital light curve with variation of the non-thermal flux by a factor of $sim 11$, with peaks around orbital phases 0.6 and 0.9. We suggest the magnetic field of the companion plays a significant role in the X-ray emission from intrabinary shocks in redbacks.