Do you want to publish a course? Click here

Double island Coulomb blockade in (Ga,Mn)As-nanoconstrictions

494   0   0.0 ( 0 )
 Added by Sebastian Pfaller
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on a systematic study of the Coulomb blockade effects in nanofabricated narrow constrictions in thin (Ga,Mn)As films. Different low-temperature transport regimes have been observed for decreasing constriction sizes: the ohmic, the single electron tunnelling (SET) and a completely insulating regime. In the SET, complex stability diagrams with nested Coulomb diamonds and anomalous conductance suppression in the vicinity of charge degeneracy points have been observed. We rationalize these observations in the SET with a double ferromagnetic island model coupled to ferromagnetic leads. Its transport characteristics are analyzed in terms of a modified orthodox theory of Coulomb blockade which takes into account the energy dependence of the density of states in the metallic islands.



rate research

Read More

We have fabricated (Ga,Mn)As nanostructures in which domain walls can be pinned by sub-10 nm constrictions. Controlled by shape anisotropy, we can switch the regions on either side of the constriction to either parallel or antiparallel magnetization. All samples exhibit a positive magnetoresistance, consistent with domain-wall trapping. For metallic samples we find a magnetoresistance up to 8%, which can be understood from spin accumulation. In samples where, due to depletion at the constriction, a tunnel barrier is formed, we observe a magnetoresistance of up to 2000 %.
We consider the ground-state energy and the spectrum of the low-energy excitations of a Majorana island formed of topological superconductors connected by a single-mode junction of arbitrary transmission. Coulomb blockade results in $e$-periodic modulation of the energies with the gate-induced charge. We find the amplitude of modulation as a function of reflection coefficient ${cal R}$. The amplitude scales as $sqrt{cal R}$ in the limit ${cal R}to 0$. At larger ${cal R}$, the dependence of the amplitude on the Josephson and charging energies is similar to that of a conventional-superconductor Cooper-pair box. The crossover value of ${cal R}$ is small and depends on the ratio of the charging energy to superconducting gap.
We report measurements on single-electron pumps, consisting of two metallic islands formed by three tunnel junctions in series. We focus on the linear-response conductance as a function of gate voltage and temperature of three samples with varying system parameters. In all cases, strong quantum fluctuation phenomena are observed by a log(k_B T/(2 E_co)) reduction of the maximal conductance, where E_co measures the coupling strength between the islands. The samples display a rich phenomenology, culminating in a non-monotonic behavior of the maximal conductance as a function of temperature.
125 - Feng Li , HuJun Jiao , JuYan Luo 2009
Electron transport through two parallel quantum dots is a kind of solid-state realization of double-path interference. We demonstrate that the inter-dot Coulomb correlation and quantum coherence would result in strong current fluctuations with a divergent Fano factor at zero frequency. We also provide physical interpretation for this surprising result, which displays its generic feature and allows us to recover this phenomenon in more complicated systems.
90 - C. Gould , K. Pappert , C. Ruster 2006
Current induced magnetization switching and resistance associated with domain walls pinned in nanoconstrictions have both been previously reported in (Ga,Mn)As based devices, but using very dissimilar experimental schemes and device geometries . Here we report on the simultaneous observation of both effects in a single nanodevice, which constitutes a significant step forward towards the eventual realization of spintronic devices which make use of domain walls to store, transport, and manipulate information.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا