Do you want to publish a course? Click here

Resonating Valence Bond Quantum Monte Carlo: Application to the ozone molecule

117   0   0.0 ( 0 )
 Added by Thomas K\\\"uhne
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the potential energy surface of the ozone molecule by means of Quantum Monte Carlo simulations based on the resonating valence bond concept. The trial wave function consists of an antisymmetrized geminal power arranged in a single-determinant that is multiplied by a Jastrow correlation factor. Whereas the determinantal part incorporates static correlation effects, the augmented real-space correlation factor accounts for the dynamics electron correlation. The accuracy of this approach is demonstrated by computing the potential energy surface for the ozone molecule in three vibrational states: symmetric, asymmetric and scissoring. We find that the employed wave function provides a detailed description of rather strongly-correlated multi-reference systems, which is in quantitative agreement with experiment.

rate research

Read More

We investigate the entanglement properties of resonating-valence-bond states on two and higher dimensional lattices, which play a significant role in our understanding of various many-body systems. We show that these states are genuinely multipartite entangled, while there is only a negligible amount of two-site entanglement. We comment on possible physical implications of our findings.
We expand upon the recent semi-stochastic adaptation to full configuration interaction quantum Monte Carlo (FCIQMC). We present an alternate method for generating the deterministic space without a priori knowledge of the wave function and present stochastic efficiencies for a variety of both molecular and lattice systems. The algorithmic details of an efficient semi-stochastic implementation are presented, with particular consideration given to the effect that the adaptation has on parallel performance in FCIQMC. We further demonstrate the benefit for calculation of reduced density matrices in FCIQMC through replica sampling, where the semi-stochastic adaptation seems to have even larger efficiency gains. We then combine these ideas to produce explicitly correlated corrected FCIQMC energies for the Beryllium dimer, for which stochastic errors on the order of wavenumber accuracy are achievable.
We outline how auxiliary-field quantum Monte Carlo (AFQMC) can leverage graphical processing units (GPUs) to accelerate the simulation of solid state sytems. By exploiting conservation of crystal momentum in the one- and two-electron integrals we show how to efficiently formulate the algorithm to best utilize current GPU architectures. We provide a detailed description of different optimization strategies and profile our implementation relative to standard approaches, demonstrating a factor of 40 speed up over a CPU implementation. With this increase in computational power we demonstrate the ability of AFQMC to systematically converge solid state calculations with respect to basis set and system size by computing the cohesive energy of Carbon in the diamond structure to within 0.02 eV of the experimental result.
176 - G. Baskaran 2017
Resonating valence bond (RVB) theory of high Tc superconductivity, an electron correlation based mechanism, began as an insightful response by Anderson, to Bednorz and Mullers discovery of high Tc superconductivity in cuprates in late 1986. Shortly a theoretical framework for quantum spin liquids and superconductivity was developed. This theory adresses a formidable strong coupling quantum manybody problem, in modern times. It is built on certain key experimental facts: i) survival of a dynamical Mott localization in a metallic state, ii) proliferation of bond singlets and iii) absence of fermi liquid quasi particles. After summarising RVB theory I will provide an aerial view of, mostly, new superconductors where I believe that, to a large degree RVB mechanism is at work and indicate prospects for even higher Tcs.
Properties that are necessarily formulated within pure (symmetric) expectation values are difficult to calculate for projector quantum Monte Carlo approaches, but are critical in order to compute many of the important observable properties of electronic systems. Here, we investigate an approach for the sampling of unbiased reduced density matrices within the Full Configuration Interaction Quantum Monte Carlo dynamic, which requires only small computational overheads. This is achieved via an independent replica population of walkers in the dynamic, sampled alongside the original population. The resulting reduced density matrices are free from systematic error (beyond those present via constraints on the dynamic itself), and can be used to compute a variety of expectation values and properties, with rapid convergence to an exact limit. A quasi-variational energy estimate derived from these density matrices is proposed as an accurate alternative to the projected estimator for multiconfigurational wavefunctions, while its variational property could potentially lend itself to accurate extrapolation approaches in larger systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا