Do you want to publish a course? Click here

Quantum Criticality at the Origin of Life

129   0   0.0 ( 0 )
 Added by Gabor Vattay
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Why life persists at the edge of chaos is a question at the very heart of evolution. Here we show that molecules taking part in biochemical processes from small molecules to proteins are critical quantum mechanically. Electronic Hamiltonians of biomolecules are tuned exactly to the critical point of the metal-insulator transition separating the Anderson localized insulator phase from the conducting disordered metal phase. Using tools from Random Matrix Theory we confirm that the energy level statistics of these biomolecules show the universal transitional distribution of the metal-insulator critical point and the wave functions are multifractals in accordance with the theory of Anderson transitions. The findings point to the existence of a universal mechanism of charge transport in living matter. The revealed bio-conductor material is neither a metal nor an insulator but a new quantum critical material which can exist only in highly evolved systems and has unique material properties.



rate research

Read More

Entanglement is a physical resource of a quantum system just like mass, charge or energy. Moreover it is an essential tool for many purposes of nowadays quantum information processing, e.g. quantum teleportation, quantum cryptography or quantum computation. In this work we investigate an extended system of N qubits. In our system a qubit is the absence or presence of an electron at a site of a tight-binding system. Several measures of entanglement between a given qubit and the rest of the system and also the entanglement between two qubits and the rest of the system is calculated in a one-electron picture in the presence of disorder. We invoke the power law band random matrix model which even in one dimension is able to produce multifractal states that fluctuate at all length scales. The concurrence, the tangle and the entanglement entropy all show interesting scaling properties.
We study the infinite-temperature properties of an infinite sequence of random quantum spin chains using a real-space renormalization group approach, and demonstrate that they exhibit non-ergodic behavior at strong disorder. The analysis is conveniently implemented in terms of SU(2)$_k$ anyon chains that include the Ising and Potts chains as notable examples. Highly excited eigenstates of these systems exhibit properties usually associated with quantum critical ground states, leading us to dub them quantum critical glasses. We argue that random-bond Heisenberg chains self-thermalize and that the excited-state entanglement crosses over from volume-law to logarithmic scaling at a length scale that diverges in the Heisenberg limit $krightarrowinfty$. The excited state fixed points are generically distinct from their ground state counterparts, and represent novel non-equilibrium critical phases of matter.
We investigate the global persistence properties of critical systems relaxing from an initial state with non-vanishing value of the order parameter (e.g., the magnetization in the Ising model). The persistence probability of the global order parameter displays two consecutive regimes in which it decays algebraically in time with two distinct universal exponents. The associated crossover is controlled by the initial value m_0 of the order parameter and the typical time at which it occurs diverges as m_0 vanishes. Monte-Carlo simulations of the two-dimensional Ising model with Glauber dynamics display clearly this crossover. The measured exponent of the ultimate algebraic decay is in rather good agreement with our theoretical predictions for the Ising universality class.
Quantum critical points in quasiperiodic magnets can realize new universality classes, with critical properties distinct from those of clean or disordered systems. Here, we study quantum phase transitions separating ferromagnetic and paramagnetic phases in the quasiperiodic $q$-state Potts model in $2+1d$. Using a controlled real-space renormalization group approach, we find that the critical behavior is largely independent of $q$, and is controlled by an infinite-quasiperiodicity fixed point. The correlation length exponent is found to be $ u=1$, saturating a modified version of the Harris-Luck criterion.
The numerical emulation of quantum systems often requires an exponential number of degrees of freedom which translates to a computational bottleneck. Methods of machine learning have been used in adjacent fields for effective feature extraction and dimensionality reduction of high-dimensional datasets. Recent studies have revealed that neural networks are further suitable for the determination of macroscopic phases of matter and associated phase transitions as well as efficient quantum state representation. In this work, we address quantum phase transitions in quantum spin chains, namely the transverse field Ising chain and the anisotropic XY chain, and show that even neural networks with no hidden layers can be effectively trained to distinguish between magnetically ordered and disordered phases. Our neural network acts to predict the corresponding crossovers finite-size systems undergo. Our results extend to a wide class of interacting quantum many-body systems and illustrate the wide applicability of neural networks to many-body quantum physics.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا