Do you want to publish a course? Click here

Actin polymerization front propagation in a comb-reaction system

115   0   0.0 ( 0 )
 Added by Alexander Iomin
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Anomalous transport and reaction dynamics are considered by providing the theoretical grounds for the possible experimental realization of actin polymerization in comb-like geometry. Two limiting regimes are recovered, depending on the concentration of reagents (magnesium and actin). These are both the failure of the reaction front propagation and a finite speed corresponding to the Fisher-KPP long time asymptotic regime.



rate research

Read More

It is proposed that the rate of relaxation in a liquid is better described by the geometric mean of the van Hove distribution function, rather than the standard arithmetic mean used to obtain the mean squared displacement. The difference between the two means is shown to increase significantly with an increase in the non-Gaussian character of the displacement distribution. Preliminary results indicate that the geometric diffusion constant results in a substantial reduction of the deviation from Stokes-Einstein scaling.
In the presence of disorder, an interacting closed quantum system can undergo many-body localization (MBL) and fail to thermalize. However, over long times even weak couplings to any thermal environment will necessarily thermalize the system and erase all signatures of MBL. This presents a challenge for experimental investigations of MBL, since no realistic system can ever be fully closed. In this work, we experimentally explore the thermalization dynamics of a localized system in the presence of controlled dissipation. Specifically, we find that photon scattering results in a stretched exponential decay of an initial density pattern with a rate that depends linearly on the scattering rate. We find that the resulting susceptibility increases significantly close to the phase transition point. In this regime, which is inaccessible to current numerical studies, we also find a strong dependence on interactions. Our work provides a basis for systematic studies of MBL in open systems and opens a route towards extrapolation of closed system properties from experiments.
Apparent critical phenomena, typically indicated by growing correlation lengths and dynamical slowing-down, are ubiquitous in non-equilibrium systems such as supercooled liquids, amorphous solids, active matter and spin glasses. It is often challenging to determine if such observations are related to a true second-order phase transition as in the equilibrium case, or simply a crossover, and even more so to measure the associated critical exponents. Here, we show that the simulation results of a hard-sphere glass in three dimensions, are consistent with the recent theoretical prediction of a Gardner transition, a continuous non-equilibrium phase transition. Using a hybrid molecular simulation-machine learning approach, we obtain scaling laws for both finite-size and aging effects, and determine the critical exponents that traditional methods fail to estimate. Our study provides a novel approach that is useful to understand the nature of glass transitions, and can be generalized to analyze other non-equilibrium phase transitions.
Strongly correlated systems can exhibit surprising phenomena when brought in a state far from equilibrium. A spectacular example are quantum avalanches, that have been predicted to run through a many-body--localized system and delocalize it. Quantum avalanches occur when the system is locally coupled to a small thermal inclusion that acts as a bath. Here we realize an interface between a many-body--localized system and a thermal inclusion of variable size, and study its dynamics. We find evidence for accelerated transport into the localized region, signature of a quantum avalanche. By measuring the site-resolved entropy we monitor how the avalanche travels through the localized system and thermalizes it site by site. Furthermore, we isolate the bath-induced dynamics by evaluating multipoint correlations between the bath and the system. Our results have fundamental implications on the robustness of many-body--localized systems and their critical behavior.
We study a lattice model of attractive colloids. It is exactly solvable on sparse random graphs. As the pressure and temperature are varied it reproduces many characteristic phenomena of liquids, glasses and colloidal systems such as ideal gel formation, liquid-glass phase coexistence, jamming, or the reentrance of the glass transition.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا