Theoretical Exploration on the Magnetic Properties of Ferromagnetic Metallic Glass: An Ising Model on Random Recursive Lattice


Abstract in English

The ferromagnetic Ising spins are modeled on a recursive lattice constructed from random-angled rhombus units with stochastic configurations, to study the magnetic properties of the bulk Fe-based metallic glass. The integration of spins on the structural glass model well represents the magnetic moments in the glassy metal. The model is exactly solved by the recursive calculation technique. The magnetization of the amorphous Ising spins, i.e. the glassy metallic magnet is investigated by our modeling and calculation on a theoretical base. The results show that the glassy metallic magnets has a lower Curie temperature, weaker magnetization, and higher entropy comparing to the regular ferromagnet in crystal form. These findings can be understood with the randomness of the amorphous system, and agrees well with others experimental observations.

Download