Do you want to publish a course? Click here

Torsion induced effects in magnetic nanowires

318   0   0.0 ( 0 )
 Added by Denis Sheka
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Magnetic helix wire is one of the most simple magnetic systems which manifest properties of both curvature and torsion. There exist two equilibrium states in the helix wire with easy-tangential anisotropy: a quasi-tangential magnetization distribution in case of relatively small curvatures and torsions, and an onion state in opposite case. In the last case the magnetization is close to tangential one, deviations are caused by the torsion and curvature. Possible equilibrium magnetization states in the helix magnet with different anisotropy directions are studied theoretically. The torsion also essentially influences the spin-wave dynamics, acting as an effective magnetic field. Originated from the curvature induced effective Dzyaloshinskii interaction, this magnetic field leads to the coupling between the helix chirality and the magnetochirality, it breaks mirror symmetry in spin-wave spectrum. All analytical predictions on magnetization statics an dynamics are well confirmed by the direct spin lattice simulations.



rate research

Read More

159 - A.Ron , E.Maniv , D.Graf 2014
Resistance as a function of temperature down to 20mK and magnetic fields up to 18T for various carrier concentrations is measured for nanowires made from the SrTiO3/LaAlO3 interface using a hard mask shadow deposition technique. The narrow width of the wires (of the order of 50nm) allows us to separate out the magnetic effects from the dominant superconducting ones at low magnetic fields. At this regime hysteresis loops are observed along with the superconducting transition. From our data analysis we find that the magnetic order probed by the giant magnetoresistance (GMR) effect vanishes at TCurie = 954 mK. This order is not a simple ferromagnetic state but consists of domains with opposite magnetization having a preferred in-plane orientation.
A weak perpendicular magnetic field, $B$, breaks the chiral symmetry of each valley in the electron spectrum of graphene, preserving the overall chiral symmetry in the Brillouin zone. We explore the consequences of this symmetry breaking for the interaction effects in graphene. In particular, we demonstrate that the electron-electron interaction lifetime acquires an anomalous $B$-dependence. Also, the ballistic zero-bias anomaly, $delta u(omega)$, where $omega$ is the energy measured from the Fermi level, emerges at a weak $B$ and has the form $delta u(B)sim B^2/omega^2$. Temperature dependence of the magnetic-field corrections to the thermodynamic characteristics of graphene is also anomalous. We discuss experimental manifestations of the effects predicted. The microscopic origin of the $B$-field sensitivity is an extra phase acquired by the electron wave-function resulting from the chirality-induced pseudospin precession.
132 - J.H. Jefferson , A. Ramsak , 2008
A shallow potential well in a near-perfect quantum wire will bind a single-electron and behave like a quantum dot, giving rise to spin-dependent resonances of propagating electrons due to Coulomb repulsion and Pauli blocking. It is shown how this may be used to generate full entanglement between static and flying spin-qubits near resonance in a two-electron system via singlet or triplet spin-filtering. In a quantum wire with many electrons, the same pairwise scattering may be used to explain conductance, thermopower and shot-noise anomalies, provided the temperature/energy scale is sufficiently high for Kondo-like many-body effects to be negligible.
114 - Yi Huang , B. I. Shklovskii 2021
Three-dimensional topological insulator (TI) nanowires with quantized surface subband spectra are studied as a main component of Majorana bound states (MBS) devices. However, such wires are known to have large concentration $N sim 10^{19}$ cm$^{-3}$ of Coulomb impurities. It is believed that a MBS device can function only if the amplitude of long-range fluctuations of the random Coulomb potential $Gamma$ is smaller than the subband gap $Delta$. Here we calculate $Gamma$ for recently experimentally studied large-dielectric-constant (Bi$_{1-x}$Sb$_x$)$_2$Te$_{3}$ wires in a small-dielectric-constant environment (no superconductor). We show that provided by such a dielectric-constant contrast, the confinement of electric field of impurities within the wire allows more distant impurities to contribute into $Gamma$, leading to $Gamma sim 3Delta$. We also calculate a TI wire resistance as a function of the Fermi level and carrier concentration due to scattering on Coulomb and neutral impurities, and do not find observable discrete subband-spectrum related oscillations at $N gtrsim 10^{18}$ cm$^{-3}$.
We focus on inducing topological state from regular, or irregular scattering in (i) p-wave superconducting wires and (ii) Rashba wires proximity coupled to an s-wave superconductor. We find that contrary to common expectations the topological properties of both systems are fundamentally different: In p-wave wires, disorder generally has a detrimental effect on the topological order and the topological state is destroyed beyond a critical disorder strength. In contrast, in Rashba wires, which are relevant for recent experiments, disorder can {it induce} topological order, reducing the need for quasiballistic samples to obtain Majorana fermions. Moreover, we find that the total phase space area of the topological state is conserved for long disordered Rashba wires, and can even be increased in an appropriately engineered superlattice potential.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا