The nature of Itinerant Ferromagnetism of SrRuO3 : A DFT+DMFT Study


Abstract in English

We have investigated the temperature (T)-dependent evolution of electronic structures and magnetic properties of an itinerant ferromagnet SrRuO3, employing the combined scheme of the density functional theory and the dynamical mean-field theory (DFT+DMFT). The inclusion of finite dynamical correlation effects beyond the DFT well describes not only the incoherent hump structure observed in the photoemission experiment but also the T-dependent magnetic properties in accordance with experiments. We have shown that the magnetization of SrRuO3 evolves with the Stoner behavior below the Curie temperature (Tc), reflecting the weak itinerant ferromagnetic behavior, but the local residual magnetic moment persists even above Tc, indicating the local magnetic moment behavior. We suggest that the ferromagnetism of SrRuO3 has dual nature of both weak and local moment limits, even though the magnetism of SrRuO3 is more itinerant than that of Fe.

Download