No Arabic abstract
Macroscopic ensembles of radiating dipoles are ubiquitous in the physical and natural sciences. In the classical limit the dipoles can be described as damped-driven oscillators, which are able to spontaneously synchronize and collectively lock their phases. Here we investigate the correspond- ing phenomenon in the quantum regime with arrays of quantized two-level systems coupled via long-range and anisotropic dipolar interactions. Our calculations demonstrate that the dipoles may overcome the decoherence induced by quantum fluctuations and inhomogeneous couplings and evolve to a synchronized steady-state. This steady-state bears much similarity to that observed in classical systems, and yet also exhibits genuine quantum properties such as quantum correlations and quan- tum phase diffusion (reminiscent of lasing). Our predictions could be relevant for the development of better atomic clocks and a variety of noise tolerant quantum devices.
We propose a system for observing the correlated phase dynamics of two mesoscopic ensembles of atoms through their collective coupling to an optical cavity. We find a dynamical quantum phase transition induced by pump noise and cavity output-coupling. The spectral properties of the superradiant light emitted from the cavity show that at a critical pump rate the system undergoes a transition from the independent behavior of two disparate oscillators to the phase-locking that is the signature of quantum synchronization.
Relaxation to a thermal state is the inevitable fate of non-equilibrium interacting quantum systems without special conservation laws. While thermalization in one-dimensional (1D) systems can often be suppressed by integrability mechanisms, in two spatial dimensions thermalization is expected to be far more effective due to the increased phase space. In this work we propose a general framework for escaping or delaying the emergence of the thermal state in two-dimensional (2D) arrays of Rydberg atoms via the mechanism of quantum scars, i.e. initial states that fail to thermalize. The suppression of thermalization is achieved in two complementary ways: by adding local perturbations or by adjusting the driving Rabi frequency according to the local connectivity of the lattice. We demonstrate that these mechanisms allow to realize robust quantum scars in various two-dimensional lattices, including decorated lattices with non-constant connectivity. In particular, we show that a small decrease of the Rabi frequency at the corners of the lattice is crucial for mitigating the strong boundary effects in two-dimensional systems. Our results identify synchronization as an important tool for future experiments on two-dimensional quantum scars.
A full treatment for the scattering of an arbitrary number of bosons through a Bell multiport beam splitter is presented that includes all possible output arrangements. Due to exchange symmetry, the event statistics differs dramatically from the classical case in which the realization probabilities are given by combinatorics. A law for the suppression of output configurations is derived and shown to apply for the majority of all possible arrangements. Such multiparticle interference effects dominate at the level of single transition amplitudes, while a generic bosonic signature can be observed when the average number of occupied ports or the typical number of particles per port is considered. The results allow to classify in a common approach several recent experiments and theoretical studies and disclose many accessible quantum statistical effects involving many particles.
The non-equilibrium response of a quantum many-body system defines its fundamental transport properties and how initially localized quantum information spreads. However, for long-range-interacting quantum systems little is known. We address this issue by analyzing a local quantum quench in the long-range Ising model in a transverse field, where interactions decay as a variable power-law with distance $propto r^{-alpha}$, $alpha>0$. Using complementary numerical and analytical techniques, we identify three dynamical regimes: short-range-like with an emerging light cone for $alpha>2$; weakly long-range for $1<alpha<2$ without a clear light cone but with a finite propagation speed of almost all excitations; and fully non-local for $alpha<1$ with instantaneous transmission of correlations. This last regime breaks generalized Lieb--Robinson bounds and thus locality. Numerical calculation of the entanglement spectrum demonstrates that the usual picture of propagating quasi-particles remains valid, allowing an intuitive interpretation of our findings via divergences of quasi-particle velocities. Our results may be tested in state-of-the-art trapped-ion experiments.
We study the dynamics of the many-body atomic kicked rotor with interactions at the mean-field level, governed by the Gross-Pitaevskii equation. We show that dynamical localization is destroyed by the interaction, and replaced by a subdiffusive behavior. In contrast to results previously obtained from a simplified version of the Gross-Pitaevskii equation, the subdiffusive exponent does not appear to be universal. By studying the phase of the mean-field wave function, we propose a new approximation that describes correctly the dynamics at experimentally relevant times close to the start of subdiffusion, while preserving the reduced computational cost of the former approximation.