Do you want to publish a course? Click here

Mapping the Dynamics of a Giant Ly-alpha Halo at z=4.1 with MUSE: The Energetics of a Large Scale AGN-Driven Outflow around a Massive, High-Redshift Galaxy

130   0   0.0 ( 0 )
 Added by Mark Swinbank Dr.
 Publication date 2015
  fields Physics
and research's language is English
 Authors Mark Swinbank




Ask ChatGPT about the research

We present deep MUSE integral-field unit (IFU) spectroscopic observations of the giant (~150 x 80 kpc) Ly-alpha halo around the z=4.1 radio galaxy TNJ J1338-1942. This 9-hr observation maps the two-dimensional kinematics of the Ly-alpha emission across the halo. We identify two HI absorbers which are seen against the Ly-alpha emission, both of which cover the full 150 x 80 kpc extent of the halo and so have covering fractions ~1. The stronger and more blue-shifted absorber (dv~1200 km/s) has dynamics that mirror that of the underlying halo emission and we suggest that this high column material (n(HI) ~ 10^19.4 /cm^2), which is also seen in CIV absorption, represents an out-flowing shell that has been driven by the AGN (or star formation) within the galaxy. The weaker (n(HI)~10^14 /cm^2) and less blue shifted (dv~500 km/s) absorber most likely represents material in the cavity between the out-flowing shell and the Ly-alpha halo. We estimate that the mass in the shell must be of order 10^10 Msol -- a significant fraction of the ISM from a galaxy at z=4. The large scales of these coherent structures illustrate the potentially powerful influence of AGN feedback on the distribution and energetics of material in their surroundings. Indeed, the discovery of high-velocity (~1000 km/s), group-halo-scale (i.e. >150 kpc) and mass-loaded winds in the vicinity of the central radio source are broadly in agreement with the requirements of models that invoke AGN-driven outflows to regulate star formation and black-hole growth in massive galaxies at early times.



rate research

Read More

We exploit wide-field Ly$alpha$ imaging with Subaru to probe the environment around TN J1338-1942, a powerful radio galaxy with a >100 kpc Ly$alpha$ halo at z=4.11. We used a sample of Ly$alpha$ emitters (LAEs) down to $log(L_{rm Lyalpha} [erg, s^{-1}])sim 42.8$ to measure the galaxy density around TNJ1338, compared to a control sample from a blank field taken with the same instrument. We found that TNJ1338 resides in a region with a peak overdensity of $delta_{rm LAE}=2.8pm 0.5$ on scales of $8, h^{-1}rm Mpc$ (on the sky) and $112, h^{-1}rm Mpc$ (line of sight) in comoving coordinates. Adjacent to this overdensity, we found a strong underdensity where virtually no LAEs are detected. We used a semi-analytical model of LAEs derived from the Millennium Simulation to compare our results with theoretical predictions. While the theoretical density distribution is consistent with the blank field, overdense regions such as that around TNJ1338 are very rare, with a number density of $6.4times 10^{-8}rm Mpc^{-3}$ (comoving), corresponding to the densest < 0.4 percentile at $zsimeq 4.1$. We also found that the Ly$alpha$ luminosity function in the TNJ1338 field differs from that in the blank field: the number of bright LAEs ($log(L_{rm Lyalpha}[erg,s^{-1}]) gtrsim 43.3$) is enhanced, while the number of fainter LAEs is relatively suppressed. These results suggest that some powerful radio galaxies associated with Ly$alpha$ nebulae reside in extreme overdensities on $sim 3$--$6, rm Mpc$ scales, where star-formation and AGN activity may be enhanced via frequent galaxy mergers or high rates of gas accretion from the surroundings.
A prediction of the classic active galactic nuclei (AGN) unification model is the presence of ionisation cones with different orientations depending on the AGN type. Confirmations of this model exist for present times, but it is less clear in the early Universe. Here, we use the morphology of giant Ly$alpha$ nebulae around AGNs at redshift z$sim$3 to probe AGN emission and therefore the validity of the AGN unification model at this redshift. We compare the spatial morphology of 19 nebulae previously found around type I AGNs with a new sample of 4 Ly$alpha$ nebulae detected around type II AGNs. Using two independent techniques, we find that nebulae around type II AGNs are more asymmetric than around type I, at least at radial distances $r>30$~physical kpc (pkpc) from the ionizing source. We conclude that the type I and type II AGNs in our sample show evidence of different surrounding ionising geometries. This suggests that the classical AGN unification model is also valid for high-redshift sources. Finally, we discuss how the lack of asymmetry in the inner parts (r$lesssim$30 pkpc) and the associated high values of the HeII to Ly$alpha$ ratios in these regions could indicate additional sources of (hard) ionizing radiation originating within or in proximity of the AGN host galaxies. This work demonstrates that the morphologies of giant Ly$alpha$ nebulae can be used to understand and study the geometry of high redshift AGNs on circum-nuclear scales and it lays the foundation for future studies using much larger statistical samples.
Direct Ly $alpha$ imaging of intergalactic gas at $zsim2$ has recently revealed giant cosmological structures around quasars, e.g. the Slug Nebula (Cantalupo et al. 2014). Despite their high luminosity, the detection rate of such systems in narrow-band and spectroscopic surveys is less than 10%, possibly encoding crucial information on the distribution of gas around quasars and the quasar emission properties. In this study, we use the MUSE integral-field instrument to perform a blind survey for giant Ly $alpha$ nebulae around 17 bright radio-quiet quasars at $3<z<4$ that does not suffer from most of the limitations of previous surveys. After data reduction and analysis performed with specifically developed tools, we found that each quasar is surrounded by giant Ly $alpha$ nebulae with projected sizes larger than 100 physical kpc and, in some cases, extending up to 320 kpc. The circularly averaged surface brightness profiles of the nebulae appear very similar to each other despite their different morphologies and are consistent with power laws with slopes $approx-1.8$. The similarity between the properties of all these nebulae and the Slug Nebula suggests a similar origin for all systems and that a large fraction of gas around bright quasars could be in a relatively cold (T$sim$10$^4$K) and dense phase. In addition, our results imply that such gas is ubiquitous within at least 50 kpc from bright quasars at $3<z<4$ independently of the quasar emission opening angle, or extending up to 200 kpc for quasar isotropic emission.
The well-known quasar SDSS J095253.83+011421.9 (J0952+0114) at z=3.02 has one of the most peculiar spectra discovered so far, showing the presence of narrow Ly$alpha$ and broad metal emission lines. Although recent studies have suggested that a Proximate Damped Ly$alpha$ system (PDLA) causes this peculiar spectrum, the origin of the gas associated with the PDLA is unknown. Here we report the results of MUSE observations that reveal a new giant ($approx$ 100 physical kpc) Lyman $alpha$ nebula. The detailed analysis of the Ly$alpha$ velocity, velocity dispersion, and surface brightness profiles suggests that the J0952+0114 Ly$alpha$ nebula shares similar properties of other QSO nebulae previously detected with MUSE, implying that the PDLA in J0952+0144 is covering only a small fraction of the QSO emission solid angle. We also detected bright and spectrally narrow CIV$lambda$1550 and HeII$lambda$1640 extended emission around J0952+0114 with velocity centroids similar to the peak of the extended and central narrow Ly$alpha$ emission. The presence of a peculiarly bright, unresolved, and relatively broad HeII$lambda$1640 emission in the central region at exactly the same PDLA redshift hints at the possibility that the PDLA originates in a clumpy outflow with a bulk velocity of about 500 km/s. The smaller velocity dispersion of the large scale Ly$alpha$ emission suggests that the high-speed outflow is confined to the central region. Lastly, the derived spatially resolved HeII/Ly$alpha$ and CIV/Ly$alpha$ maps show a positive gradient with the distance to the QSO hinting at a non-homogeneous ionization parameter distribution.
94 - Vera Patricio 2015
Spatially resolved studies of high redshift galaxies, an essential insight into galaxy formation processes, have been mostly limited to stacking or unusually bright objects. We present here the study of a typical (L$^{*}$, M$_star$ = 6 $times 10^9$ $M_odot$) young lensed galaxy at $z=3.5$, observed with MUSE, for which we obtain 2D resolved spatial information of Ly$alpha$ and, for the first time, of CIII] emission. The exceptional signal-to-noise of the data reveals UV emission and absorption lines rarely seen at these redshifts, allowing us to derive important physical properties (T$_esim$15600 K, n$_esim$300 cm$^{-3}$, covering fraction f$_csim0.4$) using multiple diagnostics. Inferred stellar and gas-phase metallicities point towards a low metallicity object (Z$_{mathrm{stellar}}$ = $sim$ 0.07 Z$_odot$ and Z$_{mathrm{ISM}}$ $<$ 0.16 Z$_odot$). The Ly$alpha$ emission extends over $sim$10 kpc across the galaxy and presents a very uniform spectral profile, showing only a small velocity shift which is unrelated to the intrinsic kinematics of the nebular emission. The Ly$alpha$ extension is $sim$4 times larger than the continuum emission, and makes this object comparable to low-mass LAEs at low redshift, and more compact than the Lyman-break galaxies and Ly$alpha$ emitters usually studied at high redshift. We model the Ly$alpha$ line and surface brightness profile using a radiative transfer code in an expanding gas shell, finding that this model provides a good description of both observables.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا