Do you want to publish a course? Click here

Magnetic fields on young, moderately rotating Sun-like stars - I: HD~35296 and HD~29615

141   0   0.0 ( 0 )
 Added by Ian Waite A
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Observations of the magnetic fields of young solar-type stars provide a way to investigate the signatures of their magnetic activity and dynamos. Spectropolarimetry enables the study of these stellar magnetic fields and was thus employed at the T{e}lescope Bernard Lyot and the Anglo-Australian Telescope to investigate two moderately rotating young Sun-like stars, namely HD 35296 (V119 Tau, HIP 25278) and HD 29615 (HIP 21632). The results indicate that both stars display rotational variation in chromospheric indices consistent with their spot activity, with variations indicating a probable long-term cyclic period for HD 35296. Additionally, both stars have complex, and evolving, large-scale surface magnetic fields with a significant toroidal component. High levels of surface differential rotation were measured for both stars. For the F8V star HD 35296 a rotational shear of $DeltaOmega$ = 0.22$^{+0.04}_{-0.02}$ rad/d was derived from the observed magnetic profiles. For the G3V star HD 29615 the magnetic features indicate a rotational shear of $DeltaOmega$ = 0.48$_{-0.12}^{+0.11}$ rad/d, while the spot features, with a distinctive polar spot, provide a much lower value of $DeltaOmega$ of 0.07$_{-0.03}^{+0.10}$ rad/d. Such a significant discrepancy in shear values between spot and magnetic features for HD 29615 is an extreme example of the variation observed for other lower-mass stars. From the extensive and persistent azimuthal field observed for both targets it is concluded that a distributed dynamo operates in these moderately rotating Sun-like stars, in marked contrast to the Suns interface-layer dynamo.



rate research

Read More

The magnetic fields, activity and dynamos of young solar-type stars can be empirically studied using time-series of spectropolarimetric observations and tomographic imaging techniques such as Doppler imaging and Zeeman Doppler imaging. In this paper we use these techniques to study the young Sun-like star EK Draconis (Sp-Type: G1.5V, HD 129333) using ESPaDOnS at the Canada-France-Hawaii Telescope and NARVAL at the T`elescope Bernard Lyot. This multi-epoch study runs from late 2006 until early 2012. We measure high levels of chromospheric activity indicating an active, and varying, chromosphere. Surface brightness features were constructed for all available epochs. The 2006/7 and 2008 data show large spot features appearing at intermediate-latitudes. However, the 2012 data indicate a distinctive polar spot. We observe a strong, almost unipolar, azimuthal field during all epochs that is similar to that observed on other Sun-like stars. Using magnetic features, we determined an average equatorial rotational velocity, Omega_eq, of 2.50 +/- 0.08 rad/d. High levels of surface differential rotation were measured with an average rotational shear, DeltaOmega, of 0.27 +0.24-0.26 rad/d. During an intensively observed 3-month period from December 2006 until February 2007, the magnetic field went from predominantly toroidal ( approx. 80%) to a more balanced poloidal-toroidal (approx. 40-60%) field. Although the large-scale magnetic field evolved over the epochs of our observations, no polarity reversals were found in our data.
260 - R. Fares 2013
Magnetic fields play an important role at all stages of stellar evolution. In Sun-like stars, they are generated in the outer convective layers. Studying the large-scale magnetic fields of these stars enlightens our understanding of the field properties and gives us observational constraints for the field generation models. In this review, I summarise the current observational picture of the large-scale magnetic fields of Sun-like stars, in particular solar-twins and planet-host stars. I discuss the observations of large-scale magnetic cycles, and compare these cycles to the solar cycle.
The SDSS III APOGEE survey recently identified two new $sigma$ Ori E type candidates, HD 345439 and HD 23478, which are a rare subset of rapidly rotating massive stars whose large (kGauss) magnetic fields confine circumstellar material around these systems. Our analysis of multi-epoch photometric observations of HD 345439 from the KELT, SuperWASP, and ASAS surveys reveals the presence of a $sim$0.7701 day period in each dataset, suggesting the system is amongst the faster known $sigma$ Ori E analogs. We also see clear evidence that the strength of H-alpha, H I Brackett series lines, and He I lines also vary on a $sim$0.7701 day period from our analysis of multi-epoch, multi-wavelength spectroscopic monitoring of the system from the APO 3.5m telescope. We trace the evolution of select emission line profiles in the system, and observe coherent line profile variability in both optical and infrared H I lines, as expected for rigidly rotating magnetosphere stars. We also analyze the evolution of the H I Br-11 line strength and line profile in multi-epoch observations of HD 23478 from the SDSS-III APOGEE instrument. The observed periodic behavior is consistent with that recently reported by Sikora and collaborators in optical spectra.
We analyse the magnetic activity characteristics of the planet hosting Sun-like star, HD 1237, using HARPS spectro-polarimetric time-series data. We find evidence of rotational modulation of the magnetic longitudinal field measurements consistent with our ZDI analysis, with a period of 7 days. We investigate the effect of customising the LSD mask to the line depths of the observed spectrum and find that it has a minimal effect on shape of the extracted Stokes V profile but does result in a small increase in the S/N ($sim$ 7%). We find that using a Milne-Eddington solution to describe the local line profile provides a better fit to the LSD profiles in this slowly rotating star, which also impacts the recovered ZDI field distribution. We also introduce a fit-stopping criterion based on the information content (entropy) of the ZDI maps solution set. The recovered magnetic field maps show a strong (+90 G) ring-like azimuthal field distribution and a complex radial field dominating at mid latitudes ($sim$45 degrees). Similar magnetic field maps are recovered from data acquired five months apart. Future work will investigate how this surface magnetic field distribution impacts the coronal magnetic field and extended environment around this planet-hosting star.
We present the discovery of a white dwarf companion to the G1 V star 12 Psc found as part of a Keck adaptive optics imaging survey of long-term accelerating stars from the McDonald Observatory Planet Search Program. Twenty years of precise radial-velocity monitoring of 12 Psc with the Tull Spectrograph at the Harlan J. Smith telescope reveals a moderate radial acceleration ($approx$10 m s$^{-1}$ yr $^{-1}$), which together with relative astrometry from Keck/NIRC2 and the astrometric acceleration between $Hipparcos$ and $Gaia$ DR2 yields a dynamical mass of $M_B$ = 0.605$^{+0.021}_{-0.022}$ $M_{odot}$ for 12 Psc B, a semi-major axis of 40$^{+2}_{-4}$ AU, and an eccentricity of 0.84$pm$0.08. We also report an updated orbit fit of the white dwarf companion to the metal-poor (but barium-rich) G9 V dwarf HD 159062 based on new radial velocity observations from the High-Resolution Spectrograph at the Hobby-Eberly Telescope and astrometry from Keck/NIRC2. A joint fit of the available relative astrometry, radial velocities, and tangential astrometric acceleration yields a dynamical mass of $M_B$ = 0.609$^{+0.010}_{-0.011}$ $M_{odot}$ for HD 159062 B, a semi-major axis of 60$^{+5}_{-7}$ AU, and preference for circular orbits ($e$$<$0.42 at 95% confidence). 12 Psc B and HD 159062 B join a small list of resolved Sirius-like benchmark white dwarfs with precise dynamical mass measurements which serve as valuable tests of white dwarf mass-radius cooling models and probes of AGB wind accretion onto their main-sequence companions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا