Do you want to publish a course? Click here

An Unbiased Near-infrared Interferometric Survey for Hot Exozodiacal Dust

163   0   0.0 ( 0 )
 Added by Steve Ertel
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Exozodiacal dust is warm or hot dust found in the inner regions of planetary systems orbiting main sequence stars, in or around their habitable zones. The dust can be the most luminous component of extrasolar planetary systems, but predominantly emits in the near- to mid-infrared where it is outshone by the host star. Interferometry provides a unique method of separating this dusty emission from the stellar emission. The visitor instrument PIONIER at the Very Large Telescope Interferometer (VLTI) has been used to search for hot exozodiacal dust around a large sample of nearby main sequence stars. The results of this survey are summarised: 9 out of 85 stars show excess exozodiacal emission over the stellar photospheric emission.



rate research

Read More

142 - O. Absil , L. Marion , S. Ertel 2021
(abridged) Context. The origin of hot exozodiacal dust and its connection with outer dust reservoirs remains unclear. Aims. We aim to explore the possible connection between hot exozodiacal dust and warm dust reservoirs (> 100 K) in asteroid belts. Methods. We use precision near-infrared interferometry with VLTI/PIONIER to search for resolved emission at H band around a selected sample of nearby stars. Results. Our observations reveal the presence of resolved near-infrared emission around 17 out of 52 stars, four of which are shown to be due to a previously unknown stellar companion. The 13 other H-band excesses are thought to originate from the thermal emission of hot dust grains. Taking into account earlier PIONIER observations, and after reevaluating the warm dust content of all our PIONIER targets through spectral energy distribution modeling, we find a detection rate of 17.1(+8.1)(-4.6)% for H-band excess around main sequence stars hosting warm dust belts, which is statistically compatible with the occurrence rate of 14.6(+4.3)(-2.8)% found around stars showing no signs of warm dust. After correcting for the sensitivity loss due to partly unresolved hot disks, under the assumption that they are arranged in a thin ring around their sublimation radius, we however find tentative evidence at the 3{sigma} level that H-band excesses around stars with outer dust reservoirs (warm or cold) could be statistically larger than H-band excesses around stars with no detectable outer dust. Conclusions. Our observations do not suggest a direct connection between warm and hot dust populations, at the sensitivity level of the considered instruments, although they bring to light a possible correlation between the level of H-band excesses and the presence of outer dust reservoirs in general.
We report the results of high-angular-resolution observations that search for exozodiacal light in a sample of main sequence stars and sub-giants. Using the jouvence of the fiber linked unit for optical recombination (JouFLU) at the center for high angular resolution astronomy (CHARA) telescope array, we have observed a total of 44 stars. Out of the 44 stars, 33 are new stars added to the initial, previously published survey of 42 stars performed at CHARA with the fiber linked unit for optical recombiation (FLUOR). Since the start of the survey extension, we have detected a K-band circumstellar excess for six new stars at the ~ 1% level or higher, four of which are known or candidate binaries, and two for which the excess could be attributed to exozodiacal dust. We have also performed follow-up observations of 11 of the stars observed in the previously published survey and found generally consistent results. We do however detect a significantly larger excess on three of these follow-up targets: Altair, $upsilon$ And and $kappa$ CrB. Interestingly, the last two are known exoplanet host stars. We perform a statistical analysis of the JouFLU and FLUOR samples combined, which yields an overall exozodi detection rate of $21.7^{+5.7}_{-4.1}%$. We also find that the K-band excess in FGK-type stars correlates with the existence of an outer reservoir of cold ($lesssim 100,$K) dust at the $99%$ confidence level, while the same cannot be said for A-type stars.
A warm/hot dust component (at temperature $>$ 300K) has been detected around $sim$ 20% of stars. This component is called exozodiacal dust as it presents similarities with the zodiacal dust detected in our Solar System, even though its physical properties and spatial distribution can be significantly different. Understanding the origin and evolution of this dust is of crucial importance, not only because its presence could hamper future detections of Earth-like planets in their habitable zones, but also because it can provide invaluable information about the inner regions of planetary systems. In this review, we present a detailed overview of the observational techniques used in the detection and characterisation of exozodiacal dust clouds (exozodis) and the results they have yielded so far, in particular regarding the incidence rate of exozodis as a function of crucial parameters such as stellar type and age, or the presence of an outer cold debris disc. We also present the important constraints that have been obtained, on dust size distribution and spatial location, by using state-of-the-art radiation transfer models on some of these systems. Finally, we investigate the crucial issue of how to explain the presence of exozodiacal dust around so many stars (regardless of their ages) despite the fact that such dust so close to its host star should disappear rapidly due to the coupled effect of collisions and stellar radiation pressure. Several potential mechanisms have been proposed to solve this paradox and are reviewed in detail in this paper. The review finishes by presenting the future of this growing field.
Context. Detecting and characterizing circumstellar dust is a way to study the architecture and evolution of planetary systems. Cold dust in debris disks only traces the outer regions. Warm and hot exozodiacal dust needs to be studied in order to trace regions close to the habitable zone. Aims. We aim to determine the prevalence and to constrain the properties of hot exozodiacal dust around nearby main-sequence stars. Methods. We search a magnitude limited (H < 5) sample of 92 stars for bright exozodiacal dust using our VLTI visitor instrument PIONIER in the H-band. We derive statistics of the detection rate with respect to parameters such as the stellar spectral type and age or the presence of a debris disk in the outer regions of the systems. We derive more robust statistics by combining our sample with the results from our CHARA/FLUOR survey in the K-band. In addition, our spectrally dispersed data allows us to put constraints on the emission mechanism and the dust properties in the detected systems. Results. We find an over-all detection rate of bright exozodiacal dust in the H-band of 11% (9 out of 85 targets) and three tentative detections. The detection rate decreases from early type to late type stars and increases with the age of the host star. We do not confirm the tentative correlation between the presence of cold and hot dust found in our earlier analysis of the FLUOR sample alone. Our spectrally dispersed data suggest that either the dust is extremely hot or the emission is dominated by the scattered light in most cases. The implications of our results for the target selection of future terrestrial planet finding missions using direct imaging are discussed.
[abridged] The presence of large amounts of dust in the habitable zones of nearby stars is a significant obstacle for future exo-Earth imaging missions. We executed an N band nulling interferometric survey to determine the typical amount of such exozodiacal dust around a sample of nearby main sequence stars. The majority of our data have been analyzed and we present here an update of our ongoing work. We find seven new N band excesses in addition to the high confidence confirmation of three that were previously known. We find the first detections around Sun-like stars and around stars without previously known circumstellar dust. Our overall detection rate is 23%. The inferred occurrence rate is comparable for early type and Sun-like stars, but decreases from 71% [+11%/-20%] for stars with previously detected mid- to far-infrared excess to 11% [+9%/-4%] for stars without such excess, confirming earlier results at high confidence. For completed observations on individual stars, our sensitivity is five to ten times better than previous results. Assuming a lognormal luminosity function of the dust, we find upper limits on the median dust level around all stars without previously known mid to far infrared excess of 11.5 zodis at 95% confidence level. The corresponding upper limit for Sun-like stars is 16 zodis. An LBTI vetted target list of Sun-like stars for exo-Earth imaging would have a corresponding limit of 7.5 zodis. We provide important new insights into the occurrence rate and typical levels of habitable zone dust around main sequence stars. Exploiting the full range of capabilities of the LBTI provides a critical opportunity for the detailed characterization of a sample of exozodiacal dust disks to understand the origin, distribution, and properties of the dust.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا